File size: 62,822 Bytes
95d4ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6e8b4
95d4ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
from __future__ import print_function
import json, time, os, sys, glob
import shutil
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset

import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import itertools

#A number of functions/classes are adopted from: https://github.com/jingraham/neurips19-graph-protein-design

def _scores(S, log_probs, mask):
    """ Negative log probabilities """
    criterion = torch.nn.NLLLoss(reduction='none')
    loss = criterion(
        log_probs.contiguous().view(-1,log_probs.size(-1)),
        S.contiguous().view(-1)
    ).view(S.size())
    scores = torch.sum(loss * mask, dim=-1) / torch.sum(mask, dim=-1)
    return scores

def _S_to_seq(S, mask):
    alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
    seq = ''.join([alphabet[c] for c, m in zip(S.tolist(), mask.tolist()) if m > 0])
    return seq

def parse_PDB_biounits(x, atoms=['N','CA','C'], chain=None):
  '''
  input:  x = PDB filename
          atoms = atoms to extract (optional)
  output: (length, atoms, coords=(x,y,z)), sequence
  '''

  alpha_1 = list("ARNDCQEGHILKMFPSTWYV-")
  states = len(alpha_1)
  alpha_3 = ['ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE',
             'LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL','GAP']
  
  aa_1_N = {a:n for n,a in enumerate(alpha_1)}
  aa_3_N = {a:n for n,a in enumerate(alpha_3)}
  aa_N_1 = {n:a for n,a in enumerate(alpha_1)}
  aa_1_3 = {a:b for a,b in zip(alpha_1,alpha_3)}
  aa_3_1 = {b:a for a,b in zip(alpha_1,alpha_3)}
  
  def AA_to_N(x):
    # ["ARND"] -> [[0,1,2,3]]
    x = np.array(x);
    if x.ndim == 0: x = x[None]
    return [[aa_1_N.get(a, states-1) for a in y] for y in x]
  
  def N_to_AA(x):
    # [[0,1,2,3]] -> ["ARND"]
    x = np.array(x);
    if x.ndim == 1: x = x[None]
    return ["".join([aa_N_1.get(a,"-") for a in y]) for y in x]

  xyz,seq,min_resn,max_resn = {},{},1e6,-1e6
  for line in open(x,"rb"):
    line = line.decode("utf-8","ignore").rstrip()

    if line[:6] == "HETATM" and line[17:17+3] == "MSE":
      line = line.replace("HETATM","ATOM  ")
      line = line.replace("MSE","MET")

    if line[:4] == "ATOM":
      ch = line[21:22]
      if ch == chain or chain is None:
        atom = line[12:12+4].strip()
        resi = line[17:17+3]
        resn = line[22:22+5].strip()
        x,y,z = [float(line[i:(i+8)]) for i in [30,38,46]]

        if resn[-1].isalpha(): 
            resa,resn = resn[-1],int(resn[:-1])-1
        else: 
            resa,resn = "",int(resn)-1
#         resn = int(resn)
        if resn < min_resn: 
            min_resn = resn
        if resn > max_resn: 
            max_resn = resn
        if resn not in xyz: 
            xyz[resn] = {}
        if resa not in xyz[resn]: 
            xyz[resn][resa] = {}
        if resn not in seq: 
            seq[resn] = {}
        if resa not in seq[resn]: 
            seq[resn][resa] = resi

        if atom not in xyz[resn][resa]:
          xyz[resn][resa][atom] = np.array([x,y,z])

  # convert to numpy arrays, fill in missing values
  seq_,xyz_ = [],[]
  try:
      for resn in range(min_resn,max_resn+1):
        if resn in seq:
          for k in sorted(seq[resn]): seq_.append(aa_3_N.get(seq[resn][k],20))
        else: seq_.append(20)
        if resn in xyz:
          for k in sorted(xyz[resn]):
            for atom in atoms:
              if atom in xyz[resn][k]: xyz_.append(xyz[resn][k][atom])
              else: xyz_.append(np.full(3,np.nan))
        else:
          for atom in atoms: xyz_.append(np.full(3,np.nan))
      return np.array(xyz_).reshape(-1,len(atoms),3), N_to_AA(np.array(seq_))
  except TypeError:
      return 'no_chain', 'no_chain'

def parse_PDB(path_to_pdb, input_chain_list=None, ca_only=False):
    c=0
    pdb_dict_list = []
    init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
    extra_alphabet = [str(item) for item in list(np.arange(300))]
    chain_alphabet = init_alphabet + extra_alphabet
     
    if input_chain_list:
        chain_alphabet = input_chain_list  
 

    biounit_names = [path_to_pdb]
    for biounit in biounit_names:
        my_dict = {}
        s = 0
        concat_seq = ''
        concat_N = []
        concat_CA = []
        concat_C = []
        concat_O = []
        concat_mask = []
        coords_dict = {}
        for letter in chain_alphabet:
            if ca_only:
                sidechain_atoms = ['CA']
            else:
                sidechain_atoms = ['N', 'CA', 'C', 'O']
            xyz, seq = parse_PDB_biounits(biounit, atoms=sidechain_atoms, chain=letter)
            if type(xyz) != str:
                concat_seq += seq[0]
                my_dict['seq_chain_'+letter]=seq[0]
                coords_dict_chain = {}
                if ca_only:
                    coords_dict_chain['CA_chain_'+letter]=xyz.tolist()
                else:
                    coords_dict_chain['N_chain_' + letter] = xyz[:, 0, :].tolist()
                    coords_dict_chain['CA_chain_' + letter] = xyz[:, 1, :].tolist()
                    coords_dict_chain['C_chain_' + letter] = xyz[:, 2, :].tolist()
                    coords_dict_chain['O_chain_' + letter] = xyz[:, 3, :].tolist()
                my_dict['coords_chain_'+letter]=coords_dict_chain
                s += 1
        # g改
        fi = biounit.rfind("/")
        my_dict['name']=biounit[(fi+1):(fi+5)]
        my_dict['num_of_chains'] = s
        my_dict['seq'] = concat_seq
        if s <= len(chain_alphabet):
            pdb_dict_list.append(my_dict)
            c+=1
    return pdb_dict_list



def tied_featurize(batch, device, chain_dict, fixed_position_dict=None, omit_AA_dict=None, tied_positions_dict=None, pssm_dict=None, bias_by_res_dict=None, ca_only=False):
    """ Pack and pad batch into torch tensors """
    alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
    B = len(batch)
    lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths
    L_max = max([len(b['seq']) for b in batch])
    if ca_only:
        X = np.zeros([B, L_max, 1, 3])
    else:
        X = np.zeros([B, L_max, 4, 3])
    residue_idx = -100*np.ones([B, L_max], dtype=np.int32)
    chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
    pssm_coef_all = np.zeros([B, L_max], dtype=np.float32) #1.0 for the bits that need to be predicted
    pssm_bias_all = np.zeros([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
    pssm_log_odds_all = 10000.0*np.ones([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
    chain_M_pos = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
    bias_by_res_all = np.zeros([B, L_max, 21], dtype=np.float32)
    chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
    S = np.zeros([B, L_max], dtype=np.int32)
    omit_AA_mask = np.zeros([B, L_max, len(alphabet)], dtype=np.int32)
    # Build the batch
    letter_list_list = []
    visible_list_list = []
    masked_list_list = []
    masked_chain_length_list_list = []
    tied_pos_list_of_lists_list = []
    #shuffle all chains before the main loop
    for i, b in enumerate(batch):
        if chain_dict != None:
            masked_chains, visible_chains = chain_dict[b['name']] #masked_chains a list of chain letters to predict [A, D, F]
        else:
            masked_chains = [item[-1:] for item in list(b) if item[:10]=='seq_chain_']
            visible_chains = []
        num_chains = b['num_of_chains']
        all_chains = masked_chains + visible_chains
        #random.shuffle(all_chains)
    for i, b in enumerate(batch):
        mask_dict = {}
        a = 0
        x_chain_list = []
        chain_mask_list = []
        chain_seq_list = []
        chain_encoding_list = []
        c = 1
        letter_list = []
        global_idx_start_list = [0]
        visible_list = []
        masked_list = []
        masked_chain_length_list = []
        fixed_position_mask_list = []
        omit_AA_mask_list = []
        pssm_coef_list = []
        pssm_bias_list = []
        pssm_log_odds_list = []
        bias_by_res_list = []
        l0 = 0
        l1 = 0
        for step, letter in enumerate(all_chains):
            if letter in visible_chains:
                letter_list.append(letter)
                visible_list.append(letter)
                chain_seq = b[f'seq_chain_{letter}']
                chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
                chain_length = len(chain_seq)
                global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
                chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
                chain_mask = np.zeros(chain_length) #0.0 for visible chains
                if ca_only:
                    x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
                    if len(x_chain.shape) == 2:
                        x_chain = x_chain[:,None,:]
                else:
                    x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
                x_chain_list.append(x_chain)
                chain_mask_list.append(chain_mask)
                chain_seq_list.append(chain_seq)
                chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
                l1 += chain_length
                residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
                l0 += chain_length
                c+=1
                fixed_position_mask = np.ones(chain_length)
                fixed_position_mask_list.append(fixed_position_mask)
                omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
                omit_AA_mask_list.append(omit_AA_mask_temp)
                pssm_coef = np.zeros(chain_length)
                pssm_bias = np.zeros([chain_length, 21])
                pssm_log_odds = 10000.0*np.ones([chain_length, 21])
                pssm_coef_list.append(pssm_coef)
                pssm_bias_list.append(pssm_bias)
                pssm_log_odds_list.append(pssm_log_odds)
                bias_by_res_list.append(np.zeros([chain_length, 21]))
            if letter in masked_chains:
                masked_list.append(letter)
                letter_list.append(letter)
                chain_seq = b[f'seq_chain_{letter}']
                chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
                chain_length = len(chain_seq)
                global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
                masked_chain_length_list.append(chain_length)
                chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
                chain_mask = np.ones(chain_length) #1.0 for masked
                if ca_only:
                    x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
                    if len(x_chain.shape) == 2:
                        x_chain = x_chain[:,None,:]
                else:
                    x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]               
                x_chain_list.append(x_chain)
                chain_mask_list.append(chain_mask)
                chain_seq_list.append(chain_seq)
                chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
                l1 += chain_length
                residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
                l0 += chain_length
                c+=1
                fixed_position_mask = np.ones(chain_length)
                if fixed_position_dict!=None:
                    fixed_pos_list = fixed_position_dict[b['name']][letter]
                    if fixed_pos_list:
                        fixed_position_mask[np.array(fixed_pos_list)-1] = 0.0
                fixed_position_mask_list.append(fixed_position_mask)
                omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
                if omit_AA_dict!=None:
                    for item in omit_AA_dict[b['name']][letter]:
                        idx_AA = np.array(item[0])-1
                        AA_idx = np.array([np.argwhere(np.array(list(alphabet))== AA)[0][0] for AA in item[1]]).repeat(idx_AA.shape[0])
                        idx_ = np.array([[a, b] for a in idx_AA for b in AA_idx])
                        omit_AA_mask_temp[idx_[:,0], idx_[:,1]] = 1
                omit_AA_mask_list.append(omit_AA_mask_temp)
                pssm_coef = np.zeros(chain_length)
                pssm_bias = np.zeros([chain_length, 21])
                pssm_log_odds = 10000.0*np.ones([chain_length, 21])
                if pssm_dict:
                    if pssm_dict[b['name']][letter]:
                        pssm_coef = pssm_dict[b['name']][letter]['pssm_coef']
                        pssm_bias = pssm_dict[b['name']][letter]['pssm_bias']
                        pssm_log_odds = pssm_dict[b['name']][letter]['pssm_log_odds']
                pssm_coef_list.append(pssm_coef)
                pssm_bias_list.append(pssm_bias)
                pssm_log_odds_list.append(pssm_log_odds)
                if bias_by_res_dict:
                    bias_by_res_list.append(bias_by_res_dict[b['name']][letter])
                else:
                    bias_by_res_list.append(np.zeros([chain_length, 21]))

       
        letter_list_np = np.array(letter_list)
        tied_pos_list_of_lists = []
        tied_beta = np.ones(L_max)
        if tied_positions_dict!=None:
            tied_pos_list = tied_positions_dict[b['name']]
            if tied_pos_list:
                set_chains_tied = set(list(itertools.chain(*[list(item) for item in tied_pos_list])))
                for tied_item in tied_pos_list:
                    one_list = []
                    for k, v in tied_item.items():
                        start_idx = global_idx_start_list[np.argwhere(letter_list_np == k)[0][0]]
                        if isinstance(v[0], list):
                            for v_count in range(len(v[0])):
                                one_list.append(start_idx+v[0][v_count]-1)#make 0 to be the first
                                tied_beta[start_idx+v[0][v_count]-1] = v[1][v_count]
                        else:
                            for v_ in v:
                                one_list.append(start_idx+v_-1)#make 0 to be the first
                    tied_pos_list_of_lists.append(one_list)
        tied_pos_list_of_lists_list.append(tied_pos_list_of_lists)


 
        x = np.concatenate(x_chain_list,0) #[L, 4, 3]
        all_sequence = "".join(chain_seq_list)
        m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted
        chain_encoding = np.concatenate(chain_encoding_list,0)
        m_pos = np.concatenate(fixed_position_mask_list,0) #[L,], 1.0 for places that need to be predicted

        pssm_coef_ = np.concatenate(pssm_coef_list,0) #[L,], 1.0 for places that need to be predicted
        pssm_bias_ = np.concatenate(pssm_bias_list,0) #[L,], 1.0 for places that need to be predicted
        pssm_log_odds_ = np.concatenate(pssm_log_odds_list,0) #[L,], 1.0 for places that need to be predicted

        bias_by_res_ = np.concatenate(bias_by_res_list, 0)  #[L,21], 0.0 for places where AA frequencies don't need to be tweaked

        l = len(all_sequence)
        x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, ))
        X[i,:,:,:] = x_pad

        m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
        m_pos_pad = np.pad(m_pos, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
        omit_AA_mask_pad = np.pad(np.concatenate(omit_AA_mask_list,0), [[0,L_max-l]], 'constant', constant_values=(0.0, ))
        chain_M[i,:] = m_pad
        chain_M_pos[i,:] = m_pos_pad
        omit_AA_mask[i,] = omit_AA_mask_pad

        chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
        chain_encoding_all[i,:] = chain_encoding_pad

        pssm_coef_pad = np.pad(pssm_coef_, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
        pssm_bias_pad = np.pad(pssm_bias_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
        pssm_log_odds_pad = np.pad(pssm_log_odds_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))

        pssm_coef_all[i,:] = pssm_coef_pad
        pssm_bias_all[i,:] = pssm_bias_pad
        pssm_log_odds_all[i,:] = pssm_log_odds_pad

        bias_by_res_pad = np.pad(bias_by_res_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
        bias_by_res_all[i,:] = bias_by_res_pad

        # Convert to labels
        indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32)
        S[i, :l] = indices
        letter_list_list.append(letter_list)
        visible_list_list.append(visible_list)
        masked_list_list.append(masked_list)
        masked_chain_length_list_list.append(masked_chain_length_list)


    isnan = np.isnan(X)
    mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32)
    X[isnan] = 0.

    # Conversion
    pssm_coef_all = torch.from_numpy(pssm_coef_all).to(dtype=torch.float32, device=device)
    pssm_bias_all = torch.from_numpy(pssm_bias_all).to(dtype=torch.float32, device=device)
    pssm_log_odds_all = torch.from_numpy(pssm_log_odds_all).to(dtype=torch.float32, device=device)

    tied_beta = torch.from_numpy(tied_beta).to(dtype=torch.float32, device=device)

    jumps = ((residue_idx[:,1:]-residue_idx[:,:-1])==1).astype(np.float32)
    bias_by_res_all = torch.from_numpy(bias_by_res_all).to(dtype=torch.float32, device=device)
    phi_mask = np.pad(jumps, [[0,0],[1,0]])
    psi_mask = np.pad(jumps, [[0,0],[0,1]])
    omega_mask = np.pad(jumps, [[0,0],[0,1]])
    dihedral_mask = np.concatenate([phi_mask[:,:,None], psi_mask[:,:,None], omega_mask[:,:,None]], -1) #[B,L,3]
    dihedral_mask = torch.from_numpy(dihedral_mask).to(dtype=torch.float32, device=device)
    residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device)
    S = torch.from_numpy(S).to(dtype=torch.long,device=device)
    X = torch.from_numpy(X).to(dtype=torch.float32, device=device)
    mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device)
    chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device)
    chain_M_pos = torch.from_numpy(chain_M_pos).to(dtype=torch.float32, device=device)
    omit_AA_mask = torch.from_numpy(omit_AA_mask).to(dtype=torch.float32, device=device)
    chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device)
    if ca_only:
        X_out = X[:,:,0]
    else:
        X_out = X
    return X_out, S, mask, lengths, chain_M, chain_encoding_all, letter_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef_all, pssm_bias_all, pssm_log_odds_all, bias_by_res_all, tied_beta



def loss_nll(S, log_probs, mask):
    """ Negative log probabilities """
    criterion = torch.nn.NLLLoss(reduction='none')
    loss = criterion(
        log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1)
    ).view(S.size())
    loss_av = torch.sum(loss * mask) / torch.sum(mask)
    return loss, loss_av


def loss_smoothed(S, log_probs, mask, weight=0.1):
    """ Negative log probabilities """
    S_onehot = torch.nn.functional.one_hot(S, 21).float()

    # Label smoothing
    S_onehot = S_onehot + weight / float(S_onehot.size(-1))
    S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True)

    loss = -(S_onehot * log_probs).sum(-1)
    loss_av = torch.sum(loss * mask) / torch.sum(mask)
    return loss, loss_av

class StructureDataset():
    def __init__(self, jsonl_file, verbose=True, truncate=None, max_length=100,
        alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
        alphabet_set = set([a for a in alphabet])
        discard_count = {
            'bad_chars': 0,
            'too_long': 0,
            'bad_seq_length': 0
        }

        with open(jsonl_file) as f:
            self.data = []

            lines = f.readlines()
            start = time.time()
            for i, line in enumerate(lines):
                entry = json.loads(line)
                seq = entry['seq'] 
                name = entry['name']

                # Convert raw coords to np arrays
                #for key, val in entry['coords'].items():
                #    entry['coords'][key] = np.asarray(val)

                # Check if in alphabet
                bad_chars = set([s for s in seq]).difference(alphabet_set)
                if len(bad_chars) == 0:
                    if len(entry['seq']) <= max_length:
                        if True:
                            self.data.append(entry)
                        else:
                            discard_count['bad_seq_length'] += 1
                    else:
                        discard_count['too_long'] += 1
                else:
                    print(name, bad_chars, entry['seq'])
                    discard_count['bad_chars'] += 1

                # Truncate early
                if truncate is not None and len(self.data) == truncate:
                    return

                if verbose and (i + 1) % 1000 == 0:
                    elapsed = time.time() - start
                    print('{} entries ({} loaded) in {:.1f} s'.format(len(self.data), i+1, elapsed))

            print('discarded', discard_count)
    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
    

class StructureDatasetPDB():
    def __init__(self, pdb_dict_list, verbose=True, truncate=None, max_length=100,
        alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
        alphabet_set = set([a for a in alphabet])
        discard_count = {
            'bad_chars': 0,
            'too_long': 0,
            'bad_seq_length': 0
        }

        self.data = []

        start = time.time()
        for i, entry in enumerate(pdb_dict_list):
            seq = entry['seq']
            name = entry['name']

            bad_chars = set([s for s in seq]).difference(alphabet_set)
            if len(bad_chars) == 0:
                if len(entry['seq']) <= max_length:
                    self.data.append(entry)
                else:
                    discard_count['too_long'] += 1
            else:
                discard_count['bad_chars'] += 1

            # Truncate early
            if truncate is not None and len(self.data) == truncate:
                return

            if verbose and (i + 1) % 1000 == 0:
                elapsed = time.time() - start

            #print('Discarded', discard_count)
    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


    
class StructureLoader():
    def __init__(self, dataset, batch_size=100, shuffle=True,
        collate_fn=lambda x:x, drop_last=False):
        self.dataset = dataset
        self.size = len(dataset)
        self.lengths = [len(dataset[i]['seq']) for i in range(self.size)]
        self.batch_size = batch_size
        sorted_ix = np.argsort(self.lengths)

        # Cluster into batches of similar sizes
        clusters, batch = [], []
        batch_max = 0
        for ix in sorted_ix:
            size = self.lengths[ix]
            if size * (len(batch) + 1) <= self.batch_size:
                batch.append(ix)
                batch_max = size
            else:
                clusters.append(batch)
                batch, batch_max = [], 0
        if len(batch) > 0:
            clusters.append(batch)
        self.clusters = clusters

    def __len__(self):
        return len(self.clusters)

    def __iter__(self):
        np.random.shuffle(self.clusters)
        for b_idx in self.clusters:
            batch = [self.dataset[i] for i in b_idx]
            yield batch
            
            
            
# The following gather functions
def gather_edges(edges, neighbor_idx):
    # Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C]
    neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
    edge_features = torch.gather(edges, 2, neighbors)
    return edge_features

def gather_nodes(nodes, neighbor_idx):
    # Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C]
    # Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C]
    neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1))
    neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2))
    # Gather and re-pack
    neighbor_features = torch.gather(nodes, 1, neighbors_flat)
    neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1])
    return neighbor_features

def gather_nodes_t(nodes, neighbor_idx):
    # Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C]
    idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2))
    neighbor_features = torch.gather(nodes, 1, idx_flat)
    return neighbor_features

def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx):
    h_nodes = gather_nodes(h_nodes, E_idx)
    h_nn = torch.cat([h_neighbors, h_nodes], -1)
    return h_nn


class EncLayer(nn.Module):
    def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
        super(EncLayer, self).__init__()
        self.num_hidden = num_hidden
        self.num_in = num_in
        self.scale = scale
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(num_hidden)
        self.norm2 = nn.LayerNorm(num_hidden)
        self.norm3 = nn.LayerNorm(num_hidden)

        self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
        self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
        self.W12 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.W13 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.act = torch.nn.GELU()
        self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)

    def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None):
        """ Parallel computation of full transformer layer """

        h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
        h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
        h_EV = torch.cat([h_V_expand, h_EV], -1)
        h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
        if mask_attend is not None:
            h_message = mask_attend.unsqueeze(-1) * h_message
        dh = torch.sum(h_message, -2) / self.scale
        h_V = self.norm1(h_V + self.dropout1(dh))

        dh = self.dense(h_V)
        h_V = self.norm2(h_V + self.dropout2(dh))
        if mask_V is not None:
            mask_V = mask_V.unsqueeze(-1)
            h_V = mask_V * h_V

        h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
        h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
        h_EV = torch.cat([h_V_expand, h_EV], -1)
        h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV)))))
        h_E = self.norm3(h_E + self.dropout3(h_message))
        return h_V, h_E


class DecLayer(nn.Module):
    def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
        super(DecLayer, self).__init__()
        self.num_hidden = num_hidden
        self.num_in = num_in
        self.scale = scale
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(num_hidden)
        self.norm2 = nn.LayerNorm(num_hidden)

        self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
        self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
        self.act = torch.nn.GELU()
        self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)

    def forward(self, h_V, h_E, mask_V=None, mask_attend=None):
        """ Parallel computation of full transformer layer """

        # Concatenate h_V_i to h_E_ij
        h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1)
        h_EV = torch.cat([h_V_expand, h_E], -1)

        h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
        if mask_attend is not None:
            h_message = mask_attend.unsqueeze(-1) * h_message
        dh = torch.sum(h_message, -2) / self.scale

        h_V = self.norm1(h_V + self.dropout1(dh))

        # Position-wise feedforward
        dh = self.dense(h_V)
        h_V = self.norm2(h_V + self.dropout2(dh))

        if mask_V is not None:
            mask_V = mask_V.unsqueeze(-1)
            h_V = mask_V * h_V
        return h_V 



class PositionWiseFeedForward(nn.Module):
    def __init__(self, num_hidden, num_ff):
        super(PositionWiseFeedForward, self).__init__()
        self.W_in = nn.Linear(num_hidden, num_ff, bias=True)
        self.W_out = nn.Linear(num_ff, num_hidden, bias=True)
        self.act = torch.nn.GELU()
    def forward(self, h_V):
        h = self.act(self.W_in(h_V))
        h = self.W_out(h)
        return h

class PositionalEncodings(nn.Module):
    def __init__(self, num_embeddings, max_relative_feature=32):
        super(PositionalEncodings, self).__init__()
        self.num_embeddings = num_embeddings
        self.max_relative_feature = max_relative_feature
        self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings)

    def forward(self, offset, mask):
        d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1)
        d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1)
        E = self.linear(d_onehot.float())
        return E



class CA_ProteinFeatures(nn.Module):
    def __init__(self, edge_features, node_features, num_positional_embeddings=16,
        num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
        """ Extract protein features """
        super(CA_ProteinFeatures, self).__init__()
        self.edge_features = edge_features
        self.node_features = node_features
        self.top_k = top_k
        self.augment_eps = augment_eps 
        self.num_rbf = num_rbf
        self.num_positional_embeddings = num_positional_embeddings

        # Positional encoding
        self.embeddings = PositionalEncodings(num_positional_embeddings)
        # Normalization and embedding
        node_in, edge_in = 3, num_positional_embeddings + num_rbf*9 + 7
        self.node_embedding = nn.Linear(node_in,  node_features, bias=False) #NOT USED
        self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
        self.norm_nodes = nn.LayerNorm(node_features)
        self.norm_edges = nn.LayerNorm(edge_features)


    def _quaternions(self, R):
        """ Convert a batch of 3D rotations [R] to quaternions [Q]
            R [...,3,3]
            Q [...,4]
        """
        # Simple Wikipedia version
        # en.wikipedia.org/wiki/Rotation_matrix#Quaternion
        # For other options see math.stackexchange.com/questions/2074316/calculating-rotation-axis-from-rotation-matrix
        diag = torch.diagonal(R, dim1=-2, dim2=-1)
        Rxx, Ryy, Rzz = diag.unbind(-1)
        magnitudes = 0.5 * torch.sqrt(torch.abs(1 + torch.stack([
              Rxx - Ryy - Rzz, 
            - Rxx + Ryy - Rzz, 
            - Rxx - Ryy + Rzz
        ], -1)))
        _R = lambda i,j: R[:,:,:,i,j]
        signs = torch.sign(torch.stack([
            _R(2,1) - _R(1,2),
            _R(0,2) - _R(2,0),
            _R(1,0) - _R(0,1)
        ], -1))
        xyz = signs * magnitudes
        # The relu enforces a non-negative trace
        w = torch.sqrt(F.relu(1 + diag.sum(-1, keepdim=True))) / 2.
        Q = torch.cat((xyz, w), -1)
        Q = F.normalize(Q, dim=-1)
        return Q

    def _orientations_coarse(self, X, E_idx, eps=1e-6):
        dX = X[:,1:,:] - X[:,:-1,:]
        dX_norm = torch.norm(dX,dim=-1)
        dX_mask = (3.6<dX_norm) & (dX_norm<4.0) #exclude CA-CA jumps
        dX = dX*dX_mask[:,:,None]
        U = F.normalize(dX, dim=-1)
        u_2 = U[:,:-2,:]
        u_1 = U[:,1:-1,:]
        u_0 = U[:,2:,:]
        # Backbone normals
        n_2 = F.normalize(torch.cross(u_2, u_1), dim=-1)
        n_1 = F.normalize(torch.cross(u_1, u_0), dim=-1)

        # Bond angle calculation
        cosA = -(u_1 * u_0).sum(-1)
        cosA = torch.clamp(cosA, -1+eps, 1-eps)
        A = torch.acos(cosA)
        # Angle between normals
        cosD = (n_2 * n_1).sum(-1)
        cosD = torch.clamp(cosD, -1+eps, 1-eps)
        D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
        # Backbone features
        AD_features = torch.stack((torch.cos(A), torch.sin(A) * torch.cos(D), torch.sin(A) * torch.sin(D)), 2)
        AD_features = F.pad(AD_features, (0,0,1,2), 'constant', 0)

        # Build relative orientations
        o_1 = F.normalize(u_2 - u_1, dim=-1)
        O = torch.stack((o_1, n_2, torch.cross(o_1, n_2)), 2)
        O = O.view(list(O.shape[:2]) + [9])
        O = F.pad(O, (0,0,1,2), 'constant', 0)
        O_neighbors = gather_nodes(O, E_idx)
        X_neighbors = gather_nodes(X, E_idx)
        
        # Re-view as rotation matrices
        O = O.view(list(O.shape[:2]) + [3,3])
        O_neighbors = O_neighbors.view(list(O_neighbors.shape[:3]) + [3,3])

        # Rotate into local reference frames
        dX = X_neighbors - X.unsqueeze(-2)
        dU = torch.matmul(O.unsqueeze(2), dX.unsqueeze(-1)).squeeze(-1)
        dU = F.normalize(dU, dim=-1)
        R = torch.matmul(O.unsqueeze(2).transpose(-1,-2), O_neighbors)
        Q = self._quaternions(R)

        # Orientation features
        O_features = torch.cat((dU,Q), dim=-1)
        return AD_features, O_features



    def _dist(self, X, mask, eps=1E-6):
        """ Pairwise euclidean distances """
        # Convolutional network on NCHW
        mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
        dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
        D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)

        # Identify k nearest neighbors (including self)
        D_max, _ = torch.max(D, -1, keepdim=True)
        D_adjust = D + (1. - mask_2D) * D_max
        D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
        mask_neighbors = gather_edges(mask_2D.unsqueeze(-1), E_idx)
        return D_neighbors, E_idx, mask_neighbors

    def _rbf(self, D):
        # Distance radial basis function
        device = D.device
        D_min, D_max, D_count = 2., 22., self.num_rbf
        D_mu = torch.linspace(D_min, D_max, D_count).to(device)
        D_mu = D_mu.view([1,1,1,-1])
        D_sigma = (D_max - D_min) / D_count
        D_expand = torch.unsqueeze(D, -1)
        RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
        return RBF

    def _get_rbf(self, A, B, E_idx):
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
        D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
        RBF_A_B = self._rbf(D_A_B_neighbors)
        return RBF_A_B

    def forward(self, Ca, mask, residue_idx, chain_labels):
        """ Featurize coordinates as an attributed graph """
        if self.augment_eps > 0:
            Ca = Ca + self.augment_eps * torch.randn_like(Ca)

        D_neighbors, E_idx, mask_neighbors = self._dist(Ca, mask)

        Ca_0 = torch.zeros(Ca.shape, device=Ca.device)
        Ca_2 = torch.zeros(Ca.shape, device=Ca.device)
        Ca_0[:,1:,:] = Ca[:,:-1,:]
        Ca_1 = Ca
        Ca_2[:,:-1,:] = Ca[:,1:,:]

        V, O_features = self._orientations_coarse(Ca, E_idx)
        
        RBF_all = []
        RBF_all.append(self._rbf(D_neighbors)) #Ca_1-Ca_1
        RBF_all.append(self._get_rbf(Ca_0, Ca_0, E_idx)) 
        RBF_all.append(self._get_rbf(Ca_2, Ca_2, E_idx))

        RBF_all.append(self._get_rbf(Ca_0, Ca_1, E_idx))
        RBF_all.append(self._get_rbf(Ca_0, Ca_2, E_idx))

        RBF_all.append(self._get_rbf(Ca_1, Ca_0, E_idx))
        RBF_all.append(self._get_rbf(Ca_1, Ca_2, E_idx))

        RBF_all.append(self._get_rbf(Ca_2, Ca_0, E_idx))
        RBF_all.append(self._get_rbf(Ca_2, Ca_1, E_idx))


        RBF_all = torch.cat(tuple(RBF_all), dim=-1)


        offset = residue_idx[:,:,None]-residue_idx[:,None,:]
        offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]

        d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long()
        E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
        E_positional = self.embeddings(offset.long(), E_chains)
        E = torch.cat((E_positional, RBF_all, O_features), -1)
        

        E = self.edge_embedding(E)
        E = self.norm_edges(E)
        
        return E, E_idx 




class ProteinFeatures(nn.Module):
    def __init__(self, edge_features, node_features, num_positional_embeddings=16,
        num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
        """ Extract protein features """
        super(ProteinFeatures, self).__init__()
        self.edge_features = edge_features
        self.node_features = node_features
        self.top_k = top_k
        self.augment_eps = augment_eps 
        self.num_rbf = num_rbf
        self.num_positional_embeddings = num_positional_embeddings

        self.embeddings = PositionalEncodings(num_positional_embeddings)
        node_in, edge_in = 6, num_positional_embeddings + num_rbf*25
        self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
        self.norm_edges = nn.LayerNorm(edge_features)

    def _dist(self, X, mask, eps=1E-6):
        mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
        dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
        D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
        D_max, _ = torch.max(D, -1, keepdim=True)
        D_adjust = D + (1. - mask_2D) * D_max
        sampled_top_k = self.top_k
        D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
        return D_neighbors, E_idx

    def _rbf(self, D):
        device = D.device
        D_min, D_max, D_count = 2., 22., self.num_rbf
        D_mu = torch.linspace(D_min, D_max, D_count, device=device)
        D_mu = D_mu.view([1,1,1,-1])
        D_sigma = (D_max - D_min) / D_count
        D_expand = torch.unsqueeze(D, -1)
        RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
        return RBF

    def _get_rbf(self, A, B, E_idx):
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
        D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
        RBF_A_B = self._rbf(D_A_B_neighbors)
        return RBF_A_B

    def forward(self, X, mask, residue_idx, chain_labels):
        if self.augment_eps > 0:
            X = X + self.augment_eps * torch.randn_like(X)
        
        b = X[:,:,1,:] - X[:,:,0,:]
        c = X[:,:,2,:] - X[:,:,1,:]
        a = torch.cross(b, c, dim=-1)
        Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:]
        Ca = X[:,:,1,:]
        N = X[:,:,0,:]
        C = X[:,:,2,:]
        O = X[:,:,3,:]
 
        D_neighbors, E_idx = self._dist(Ca, mask)

        RBF_all = []
        RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca
        RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N
        RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C
        RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O
        RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb
        RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N
        RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C
        RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O
        RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb
        RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C
        RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O
        RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb
        RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C
        RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O
        RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C
        RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca
        RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca
        RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca
        RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca
        RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N
        RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N
        RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N
        RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb
        RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb
        RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O
        RBF_all = torch.cat(tuple(RBF_all), dim=-1)

        offset = residue_idx[:,:,None]-residue_idx[:,None,:]
        offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]

        d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction
        E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
        E_positional = self.embeddings(offset.long(), E_chains)
        E = torch.cat((E_positional, RBF_all), -1)
        E = self.edge_embedding(E)
        E = self.norm_edges(E)
        return E, E_idx 



class ProteinMPNN(nn.Module):
    def __init__(self, num_letters, node_features, edge_features,
        hidden_dim, num_encoder_layers=3, num_decoder_layers=3,
        vocab=21, k_neighbors=64, augment_eps=0.05, dropout=0.1, ca_only=False):
        super(ProteinMPNN, self).__init__()

        # Hyperparameters
        self.node_features = node_features
        self.edge_features = edge_features
        self.hidden_dim = hidden_dim

        # Featurization layers
        if ca_only:
            self.features = CA_ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
            self.W_v = nn.Linear(node_features, hidden_dim, bias=True)
        else:
            self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)

        self.W_e = nn.Linear(edge_features, hidden_dim, bias=True)
        self.W_s = nn.Embedding(vocab, hidden_dim)

        # Encoder layers
        self.encoder_layers = nn.ModuleList([
            EncLayer(hidden_dim, hidden_dim*2, dropout=dropout)
            for _ in range(num_encoder_layers)
        ])

        # Decoder layers
        self.decoder_layers = nn.ModuleList([
            DecLayer(hidden_dim, hidden_dim*3, dropout=dropout)
            for _ in range(num_decoder_layers)
        ])
        self.W_out = nn.Linear(hidden_dim, num_letters, bias=True)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, use_input_decoding_order=False, decoding_order=None):
        """ Graph-conditioned sequence model """
        device=X.device
        # Prepare node and edge embeddings
        E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
        h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
        h_E = self.W_e(E)

        # Encoder is unmasked self-attention
        mask_attend = gather_nodes(mask.unsqueeze(-1),  E_idx).squeeze(-1)
        mask_attend = mask.unsqueeze(-1) * mask_attend
        for layer in self.encoder_layers:
            h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)

        # Concatenate sequence embeddings for autoregressive decoder
        h_S = self.W_s(S)
        h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)

        # Build encoder embeddings
        h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
        h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)


        chain_M = chain_M*mask #update chain_M to include missing regions
        if not use_input_decoding_order:
            decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
        mask_size = E_idx.shape[1]
        permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
        order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
        mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
        mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
        mask_bw = mask_1D * mask_attend
        mask_fw = mask_1D * (1. - mask_attend)

        h_EXV_encoder_fw = mask_fw * h_EXV_encoder
        for layer in self.decoder_layers:
            # Masked positions attend to encoder information, unmasked see. 
            h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
            h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
            h_V = layer(h_V, h_ESV, mask)

        logits = self.W_out(h_V)
        log_probs = F.log_softmax(logits, dim=-1)
        return log_probs



    def sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, bias_by_res=None):
        device = X.device
        # Prepare node and edge embeddings
        E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
        h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
        h_E = self.W_e(E)

        # Encoder is unmasked self-attention
        mask_attend = gather_nodes(mask.unsqueeze(-1),  E_idx).squeeze(-1)
        mask_attend = mask.unsqueeze(-1) * mask_attend
        for layer in self.encoder_layers:
            h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)

        # Decoder uses masked self-attention
        chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
        decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
        mask_size = E_idx.shape[1]
        permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
        order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
        mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
        mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
        mask_bw = mask_1D * mask_attend
        mask_fw = mask_1D * (1. - mask_attend)

        N_batch, N_nodes = X.size(0), X.size(1)
        log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
        all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
        h_S = torch.zeros_like(h_V, device=device)
        S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
        h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
        constant = torch.tensor(omit_AAs_np, device=device)
        constant_bias = torch.tensor(bias_AAs_np, device=device)
        #chain_mask_combined = chain_mask*chain_M_pos 
        omit_AA_mask_flag = omit_AA_mask != None


        h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
        h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
        h_EXV_encoder_fw = mask_fw * h_EXV_encoder
        for t_ in range(N_nodes):
            t = decoding_order[:,t_] #[B]
            chain_mask_gathered = torch.gather(chain_mask, 1, t[:,None]) #[B]
            mask_gathered = torch.gather(mask, 1, t[:,None]) #[B]
            bias_by_res_gathered = torch.gather(bias_by_res, 1, t[:,None,None].repeat(1,1,21))[:,0,:] #[B, 21]
            if (mask_gathered==0).all(): #for padded or missing regions only
                S_t = torch.gather(S_true, 1, t[:,None])
            else:
                # Hidden layers
                E_idx_t = torch.gather(E_idx, 1, t[:,None,None].repeat(1,1,E_idx.shape[-1]))
                h_E_t = torch.gather(h_E, 1, t[:,None,None,None].repeat(1,1,h_E.shape[-2], h_E.shape[-1]))
                h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
                h_EXV_encoder_t = torch.gather(h_EXV_encoder_fw, 1, t[:,None,None,None].repeat(1,1,h_EXV_encoder_fw.shape[-2], h_EXV_encoder_fw.shape[-1]))
                mask_t = torch.gather(mask, 1, t[:,None])
                for l, layer in enumerate(self.decoder_layers):
                    # Updated relational features for future states
                    h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
                    h_V_t = torch.gather(h_V_stack[l], 1, t[:,None,None].repeat(1,1,h_V_stack[l].shape[-1]))
                    h_ESV_t = torch.gather(mask_bw, 1, t[:,None,None,None].repeat(1,1,mask_bw.shape[-2], mask_bw.shape[-1])) * h_ESV_decoder_t + h_EXV_encoder_t
                    h_V_stack[l+1].scatter_(1, t[:,None,None].repeat(1,1,h_V.shape[-1]), layer(h_V_t, h_ESV_t, mask_V=mask_t))
                # Sampling step
                h_V_t = torch.gather(h_V_stack[-1], 1, t[:,None,None].repeat(1,1,h_V_stack[-1].shape[-1]))[:,0]
                logits = self.W_out(h_V_t) / temperature
                probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
                if pssm_bias_flag:
                    pssm_coef_gathered = torch.gather(pssm_coef, 1, t[:,None])[:,0]
                    pssm_bias_gathered = torch.gather(pssm_bias, 1, t[:,None,None].repeat(1,1,pssm_bias.shape[-1]))[:,0]
                    probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
                if pssm_log_odds_flag:
                    pssm_log_odds_mask_gathered = torch.gather(pssm_log_odds_mask, 1, t[:,None, None].repeat(1,1,pssm_log_odds_mask.shape[-1]))[:,0] #[B, 21]
                    probs_masked = probs*pssm_log_odds_mask_gathered
                    probs_masked += probs * 0.001
                    probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
                if omit_AA_mask_flag:
                    omit_AA_mask_gathered = torch.gather(omit_AA_mask, 1, t[:,None, None].repeat(1,1,omit_AA_mask.shape[-1]))[:,0] #[B, 21]
                    probs_masked = probs*(1.0-omit_AA_mask_gathered)
                    probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
                S_t = torch.multinomial(probs, 1)
                all_probs.scatter_(1, t[:,None,None].repeat(1,1,21), (chain_mask_gathered[:,:,None,]*probs[:,None,:]).float())
            S_true_gathered = torch.gather(S_true, 1, t[:,None])
            S_t = (S_t*chain_mask_gathered+S_true_gathered*(1.0-chain_mask_gathered)).long()
            temp1 = self.W_s(S_t)
            h_S.scatter_(1, t[:,None,None].repeat(1,1,temp1.shape[-1]), temp1)
            S.scatter_(1, t[:,None], S_t)
        output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
        return output_dict


    def tied_sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, tied_pos=None, tied_beta=None, bias_by_res=None):
        device = X.device
        # Prepare node and edge embeddings
        E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
        h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
        h_E = self.W_e(E)
        # Encoder is unmasked self-attention
        mask_attend = gather_nodes(mask.unsqueeze(-1),  E_idx).squeeze(-1)
        mask_attend = mask.unsqueeze(-1) * mask_attend
        for layer in self.encoder_layers:
            h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)

        # Decoder uses masked self-attention
        chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
        decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]

        new_decoding_order = []
        for t_dec in list(decoding_order[0,].cpu().data.numpy()):
            if t_dec not in list(itertools.chain(*new_decoding_order)):
                list_a = [item for item in tied_pos if t_dec in item]
                if list_a:
                    new_decoding_order.append(list_a[0])
                else:
                    new_decoding_order.append([t_dec])
        decoding_order = torch.tensor(list(itertools.chain(*new_decoding_order)), device=device)[None,].repeat(X.shape[0],1)

        mask_size = E_idx.shape[1]
        permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
        order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
        mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
        mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
        mask_bw = mask_1D * mask_attend
        mask_fw = mask_1D * (1. - mask_attend)

        N_batch, N_nodes = X.size(0), X.size(1)
        log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
        all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
        h_S = torch.zeros_like(h_V, device=device)
        S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
        h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
        constant = torch.tensor(omit_AAs_np, device=device)
        constant_bias = torch.tensor(bias_AAs_np, device=device)
        omit_AA_mask_flag = omit_AA_mask != None

        h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
        h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
        h_EXV_encoder_fw = mask_fw * h_EXV_encoder
        for t_list in new_decoding_order:
            logits = 0.0
            logit_list = []
            done_flag = False
            for t in t_list:
                if (mask[:,t]==0).all():
                    S_t = S_true[:,t]
                    for t in t_list:
                        h_S[:,t,:] = self.W_s(S_t)
                        S[:,t] = S_t
                    done_flag = True
                    break
                else:
                    E_idx_t = E_idx[:,t:t+1,:]
                    h_E_t = h_E[:,t:t+1,:,:]
                    h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
                    h_EXV_encoder_t = h_EXV_encoder_fw[:,t:t+1,:,:]
                    mask_t = mask[:,t:t+1]
                    for l, layer in enumerate(self.decoder_layers):
                        h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
                        h_V_t = h_V_stack[l][:,t:t+1,:]
                        h_ESV_t = mask_bw[:,t:t+1,:,:] * h_ESV_decoder_t + h_EXV_encoder_t
                        h_V_stack[l+1][:,t,:] = layer(h_V_t, h_ESV_t, mask_V=mask_t).squeeze(1)
                    h_V_t = h_V_stack[-1][:,t,:]
                    logit_list.append((self.W_out(h_V_t) / temperature)/len(t_list))
                    logits += tied_beta[t]*(self.W_out(h_V_t) / temperature)/len(t_list)
            if done_flag:
                pass
            else:
                bias_by_res_gathered = bias_by_res[:,t,:] #[B, 21]
                probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
                if pssm_bias_flag:
                    pssm_coef_gathered = pssm_coef[:,t]
                    pssm_bias_gathered = pssm_bias[:,t]
                    probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
                if pssm_log_odds_flag:
                    pssm_log_odds_mask_gathered = pssm_log_odds_mask[:,t]
                    probs_masked = probs*pssm_log_odds_mask_gathered
                    probs_masked += probs * 0.001
                    probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
                if omit_AA_mask_flag:
                    omit_AA_mask_gathered = omit_AA_mask[:,t]
                    probs_masked = probs*(1.0-omit_AA_mask_gathered)
                    probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
                S_t_repeat = torch.multinomial(probs, 1).squeeze(-1)
                S_t_repeat = (chain_mask[:,t]*S_t_repeat + (1-chain_mask[:,t])*S_true[:,t]).long() #hard pick fixed positions
                for t in t_list:
                    h_S[:,t,:] = self.W_s(S_t_repeat)
                    S[:,t] = S_t_repeat
                    all_probs[:,t,:] = probs.float()
        output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
        return output_dict


    def conditional_probs(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, backbone_only=False):
        """ Graph-conditioned sequence model """
        device=X.device
        # Prepare node and edge embeddings
        E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
        h_V_enc = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
        h_E = self.W_e(E)

        # Encoder is unmasked self-attention
        mask_attend = gather_nodes(mask.unsqueeze(-1),  E_idx).squeeze(-1)
        mask_attend = mask.unsqueeze(-1) * mask_attend
        for layer in self.encoder_layers:
            h_V_enc, h_E = layer(h_V_enc, h_E, E_idx, mask, mask_attend)

        # Concatenate sequence embeddings for autoregressive decoder
        h_S = self.W_s(S)
        h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)

        # Build encoder embeddings
        h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
        h_EXV_encoder = cat_neighbors_nodes(h_V_enc, h_EX_encoder, E_idx)


        chain_M = chain_M*mask #update chain_M to include missing regions
  
        chain_M_np = chain_M.cpu().numpy()
        idx_to_loop = np.argwhere(chain_M_np[0,:]==1)[:,0]
        log_conditional_probs = torch.zeros([X.shape[0], chain_M.shape[1], 21], device=device).float()

        for idx in idx_to_loop:
            h_V = torch.clone(h_V_enc)
            order_mask = torch.zeros(chain_M.shape[1], device=device).float()
            if backbone_only:
                order_mask = torch.ones(chain_M.shape[1], device=device).float()
                order_mask[idx] = 0.
            else:
                order_mask = torch.zeros(chain_M.shape[1], device=device).float()
                order_mask[idx] = 1.
            decoding_order = torch.argsort((order_mask[None,]+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
            mask_size = E_idx.shape[1]
            permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
            order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
            mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
            mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
            mask_bw = mask_1D * mask_attend
            mask_fw = mask_1D * (1. - mask_attend)

            h_EXV_encoder_fw = mask_fw * h_EXV_encoder
            for layer in self.decoder_layers:
                # Masked positions attend to encoder information, unmasked see. 
                h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
                h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
                h_V = layer(h_V, h_ESV, mask)

            logits = self.W_out(h_V)
            log_probs = F.log_softmax(logits, dim=-1)
            log_conditional_probs[:,idx,:] = log_probs[:,idx,:]
        return log_conditional_probs


    def unconditional_probs(self, X, mask, residue_idx, chain_encoding_all):
        """ Graph-conditioned sequence model """
        device=X.device
        # Prepare node and edge embeddings
        E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
        h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
        h_E = self.W_e(E)

        # Encoder is unmasked self-attention
        mask_attend = gather_nodes(mask.unsqueeze(-1),  E_idx).squeeze(-1)
        mask_attend = mask.unsqueeze(-1) * mask_attend
        for layer in self.encoder_layers:
            h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)

        # Build encoder embeddings
        h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_V), h_E, E_idx)
        h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)

        order_mask_backward = torch.zeros([X.shape[0], X.shape[1], X.shape[1]], device=device)
        mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
        mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
        mask_bw = mask_1D * mask_attend
        mask_fw = mask_1D * (1. - mask_attend)

        h_EXV_encoder_fw = mask_fw * h_EXV_encoder
        for layer in self.decoder_layers:
            h_V = layer(h_V, h_EXV_encoder_fw, mask)

        logits = self.W_out(h_V)
        log_probs = F.log_softmax(logits, dim=-1)
        return log_probs