Upload 2 files
Browse files
ProteinMPNN-main/protein_mpnn_run.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os.path
|
3 |
+
|
4 |
+
|
5 |
+
def p_m_r(ca_only, path_to_model_weights, model_name, seed, save_score, save_probs, score_only, conditional_probs_only,
|
6 |
+
conditional_probs_only_backbone
|
7 |
+
, unconditional_probs_only, backbone_noise, num_seq_per_target, batch_size, max_length, sampling_temp, out_folder,
|
8 |
+
pdb_path, pdb_path_chains, jsonl_path, chain_id_jsonl, fixed_positions_jsonl, omit_AAs, bias_AA_jsonl, bias_by_res_jsonl
|
9 |
+
, omit_AA_jsonl, pssm_jsonl, pssm_multi, pssm_threshold, pssm_log_odds_flag, pssm_bias_flag, tied_positions_jsonl):
|
10 |
+
seed = int(seed)
|
11 |
+
save_score = int(save_score)
|
12 |
+
save_probs = int(save_probs)
|
13 |
+
score_only = int(score_only)
|
14 |
+
conditional_probs_only = int(conditional_probs_only)
|
15 |
+
conditional_probs_only_backbone = int(conditional_probs_only_backbone)
|
16 |
+
unconditional_probs_only = int(unconditional_probs_only)
|
17 |
+
num_seq_per_target = int(num_seq_per_target)
|
18 |
+
batch_size = int(batch_size)
|
19 |
+
max_length = int(max_length)
|
20 |
+
pssm_log_odds_flag = int(pssm_log_odds_flag)
|
21 |
+
pssm_bias_flag = int(pssm_bias_flag)
|
22 |
+
import json, time, os, sys, glob
|
23 |
+
import shutil
|
24 |
+
import warnings
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
from torch import optim
|
28 |
+
from torch.utils.data import DataLoader
|
29 |
+
from torch.utils.data.dataset import random_split, Subset
|
30 |
+
import copy
|
31 |
+
import torch.nn as nn
|
32 |
+
import torch.nn.functional as F
|
33 |
+
import random
|
34 |
+
import os.path
|
35 |
+
import subprocess
|
36 |
+
|
37 |
+
from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, \
|
38 |
+
cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB
|
39 |
+
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
|
40 |
+
|
41 |
+
if seed:
|
42 |
+
seed = seed
|
43 |
+
else:
|
44 |
+
seed = int(np.random.randint(0, high=999, size=1, dtype=int)[0])
|
45 |
+
|
46 |
+
torch.manual_seed(seed)
|
47 |
+
random.seed(seed)
|
48 |
+
np.random.seed(seed)
|
49 |
+
|
50 |
+
hidden_dim = 128
|
51 |
+
num_layers = 3
|
52 |
+
|
53 |
+
if path_to_model_weights:
|
54 |
+
model_folder_path = path_to_model_weights
|
55 |
+
if model_folder_path[-1] != '/':
|
56 |
+
model_folder_path = model_folder_path + '/'
|
57 |
+
else:
|
58 |
+
file_path = os.path.realpath(__file__)
|
59 |
+
# 改
|
60 |
+
k = file_path.rfind("\\")
|
61 |
+
if ca_only:
|
62 |
+
model_folder_path = file_path[:k] + '/ca_model_weights/'
|
63 |
+
else:
|
64 |
+
model_folder_path = file_path[:k] + '/vanilla_model_weights/'
|
65 |
+
|
66 |
+
checkpoint_path = model_folder_path + f'{model_name}.pt'
|
67 |
+
folder_for_outputs = out_folder
|
68 |
+
|
69 |
+
NUM_BATCHES = num_seq_per_target // batch_size
|
70 |
+
BATCH_COPIES = batch_size
|
71 |
+
temperatures = [float(item) for item in sampling_temp.split()]
|
72 |
+
omit_AAs_list = omit_AAs
|
73 |
+
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
|
74 |
+
|
75 |
+
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)
|
76 |
+
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
|
77 |
+
# os.path.isfile():判断某一对象(需提供绝对路径)是否为文件
|
78 |
+
# 改
|
79 |
+
if chain_id_jsonl:
|
80 |
+
if os.path.isfile(chain_id_jsonl.name):
|
81 |
+
with open(chain_id_jsonl.name, 'r') as json_file:
|
82 |
+
json_list = list(json_file)
|
83 |
+
for json_str in json_list:
|
84 |
+
chain_id_dict = json.loads(json_str)
|
85 |
+
else:
|
86 |
+
chain_id_dict = None
|
87 |
+
print(40 * '-')
|
88 |
+
print('chain_id_jsonl is NOT loaded')
|
89 |
+
if fixed_positions_jsonl:
|
90 |
+
if os.path.isfile(fixed_positions_jsonl.name):
|
91 |
+
with open(fixed_positions_jsonl.name, 'r') as json_file:
|
92 |
+
json_list = list(json_file)
|
93 |
+
for json_str in json_list:
|
94 |
+
fixed_positions_dict = json.loads(json_str)
|
95 |
+
else:
|
96 |
+
print(40 * '-')
|
97 |
+
print('fixed_positions_jsonl is NOT loaded')
|
98 |
+
fixed_positions_dict = None
|
99 |
+
|
100 |
+
if os.path.isfile(pssm_jsonl):
|
101 |
+
with open(pssm_jsonl, 'r') as json_file:
|
102 |
+
json_list = list(json_file)
|
103 |
+
pssm_dict = {}
|
104 |
+
for json_str in json_list:
|
105 |
+
pssm_dict.update(json.loads(json_str))
|
106 |
+
else:
|
107 |
+
print(40 * '-')
|
108 |
+
print('pssm_jsonl is NOT loaded')
|
109 |
+
pssm_dict = None
|
110 |
+
|
111 |
+
if os.path.isfile(omit_AA_jsonl):
|
112 |
+
with open(omit_AA_jsonl, 'r') as json_file:
|
113 |
+
json_list = list(json_file)
|
114 |
+
for json_str in json_list:
|
115 |
+
omit_AA_dict = json.loads(json_str)
|
116 |
+
else:
|
117 |
+
print(40 * '-')
|
118 |
+
print('omit_AA_jsonl is NOT loaded')
|
119 |
+
omit_AA_dict = None
|
120 |
+
if bias_AA_jsonl:
|
121 |
+
if os.path.isfile(bias_AA_jsonl.name):
|
122 |
+
with open(bias_AA_jsonl.name, 'r') as json_file:
|
123 |
+
json_list = list(json_file)
|
124 |
+
for json_str in json_list:
|
125 |
+
bias_AA_dict = json.loads(json_str)
|
126 |
+
else:
|
127 |
+
print(40 * '-')
|
128 |
+
print('bias_AA_jsonl is NOT loaded')
|
129 |
+
bias_AA_dict = None
|
130 |
+
if tied_positions_jsonl:
|
131 |
+
if os.path.isfile(tied_positions_jsonl.name):
|
132 |
+
with open(tied_positions_jsonl.name, 'r') as json_file:
|
133 |
+
json_list = list(json_file)
|
134 |
+
for json_str in json_list:
|
135 |
+
tied_positions_dict = json.loads(json_str)
|
136 |
+
else:
|
137 |
+
print(40 * '-')
|
138 |
+
print('tied_positions_jsonl is NOT loaded')
|
139 |
+
tied_positions_dict = None
|
140 |
+
|
141 |
+
if os.path.isfile(bias_by_res_jsonl):
|
142 |
+
with open(bias_by_res_jsonl, 'r') as json_file:
|
143 |
+
json_list = list(json_file)
|
144 |
+
|
145 |
+
for json_str in json_list:
|
146 |
+
bias_by_res_dict = json.loads(json_str)
|
147 |
+
print('bias by residue dictionary is loaded')
|
148 |
+
else:
|
149 |
+
print(40 * '-')
|
150 |
+
print('bias by residue dictionary is not loaded, or not provided')
|
151 |
+
bias_by_res_dict = None
|
152 |
+
|
153 |
+
print(40 * '-')
|
154 |
+
bias_AAs_np = np.zeros(len(alphabet))
|
155 |
+
if bias_AA_dict:
|
156 |
+
for n, AA in enumerate(alphabet):
|
157 |
+
if AA in list(bias_AA_dict.keys()):
|
158 |
+
bias_AAs_np[n] = bias_AA_dict[AA]
|
159 |
+
|
160 |
+
# 改
|
161 |
+
if pdb_path:
|
162 |
+
|
163 |
+
pdb_dict_list = parse_PDB(pdb_path.name, ca_only=ca_only)
|
164 |
+
dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length)
|
165 |
+
all_chain_list = [item[-1:] for item in list(pdb_dict_list[0]) if item[:9] == 'seq_chain'] # ['A','B', 'C',...]
|
166 |
+
if pdb_path_chains:
|
167 |
+
designed_chain_list = [str(item) for item in pdb_path_chains.split()]
|
168 |
+
else:
|
169 |
+
designed_chain_list = all_chain_list
|
170 |
+
fixed_chain_list = [letter for letter in all_chain_list if letter not in designed_chain_list]
|
171 |
+
chain_id_dict = {}
|
172 |
+
chain_id_dict[pdb_dict_list[0]['name']] = (designed_chain_list, fixed_chain_list)
|
173 |
+
else:
|
174 |
+
dataset_valid = StructureDataset(jsonl_path.name, truncate=None, max_length=max_length)
|
175 |
+
|
176 |
+
print(40 * '-')
|
177 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
178 |
+
print('Number of edges:', checkpoint['num_edges'])
|
179 |
+
noise_level_print = checkpoint['noise_level']
|
180 |
+
print(f'Training noise level: {noise_level_print}A')
|
181 |
+
model = ProteinMPNN(ca_only=ca_only, num_letters=21, node_features=hidden_dim, edge_features=hidden_dim,
|
182 |
+
hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers,
|
183 |
+
augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges'])
|
184 |
+
model.to(device)
|
185 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
186 |
+
model.eval()
|
187 |
+
|
188 |
+
# Build paths for experiment
|
189 |
+
base_folder = folder_for_outputs
|
190 |
+
if base_folder[-1] != '/':
|
191 |
+
base_folder = base_folder + '/'
|
192 |
+
if not os.path.exists(base_folder):
|
193 |
+
os.makedirs(base_folder)
|
194 |
+
|
195 |
+
if not os.path.exists(base_folder + 'seqs'):
|
196 |
+
os.makedirs(base_folder + 'seqs')
|
197 |
+
|
198 |
+
if save_score:
|
199 |
+
if not os.path.exists(base_folder + 'scores'):
|
200 |
+
os.makedirs(base_folder + 'scores')
|
201 |
+
|
202 |
+
if score_only:
|
203 |
+
if not os.path.exists(base_folder + 'score_only'):
|
204 |
+
os.makedirs(base_folder + 'score_only')
|
205 |
+
|
206 |
+
if conditional_probs_only:
|
207 |
+
if not os.path.exists(base_folder + 'conditional_probs_only'):
|
208 |
+
os.makedirs(base_folder + 'conditional_probs_only')
|
209 |
+
|
210 |
+
if unconditional_probs_only:
|
211 |
+
if not os.path.exists(base_folder + 'unconditional_probs_only'):
|
212 |
+
os.makedirs(base_folder + 'unconditional_probs_only')
|
213 |
+
|
214 |
+
if save_probs:
|
215 |
+
if not os.path.exists(base_folder + 'probs'):
|
216 |
+
os.makedirs(base_folder + 'probs')
|
217 |
+
|
218 |
+
# Timing
|
219 |
+
start_time = time.time()
|
220 |
+
total_residues = 0
|
221 |
+
protein_list = []
|
222 |
+
total_step = 0
|
223 |
+
# Validation epoch
|
224 |
+
with torch.no_grad():
|
225 |
+
test_sum, test_weights = 0., 0.
|
226 |
+
# print('Generating sequences...')
|
227 |
+
# 改
|
228 |
+
results = []
|
229 |
+
# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
|
230 |
+
for ix, protein in enumerate(dataset_valid):
|
231 |
+
score_list = []
|
232 |
+
global_score_list = []
|
233 |
+
all_probs_list = []
|
234 |
+
all_log_probs_list = []
|
235 |
+
S_sample_list = []
|
236 |
+
# deepcopy复制
|
237 |
+
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]
|
238 |
+
X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(
|
239 |
+
batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict,
|
240 |
+
bias_by_res_dict, ca_only=ca_only)
|
241 |
+
pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() # 1.0 for true, 0.0 for false
|
242 |
+
name_ = batch_clones[0]['name']
|
243 |
+
if score_only:
|
244 |
+
structure_sequence_score_file = base_folder + '/score_only/' + batch_clones[0]['name'] + '.npz'
|
245 |
+
native_score_list = []
|
246 |
+
global_native_score_list = []
|
247 |
+
for j in range(NUM_BATCHES):
|
248 |
+
randn_1 = torch.randn(chain_M.shape, device=X.device)
|
249 |
+
log_probs = model(X, S, mask, chain_M * chain_M_pos, residue_idx, chain_encoding_all, randn_1)
|
250 |
+
mask_for_loss = mask * chain_M * chain_M_pos
|
251 |
+
scores = _scores(S, log_probs, mask_for_loss)
|
252 |
+
native_score = scores.cpu().data.numpy()
|
253 |
+
native_score_list.append(native_score)
|
254 |
+
global_scores = _scores(S, log_probs, mask)
|
255 |
+
global_native_score = global_scores.cpu().data.numpy()
|
256 |
+
global_native_score_list.append(global_native_score)
|
257 |
+
native_score = np.concatenate(native_score_list, 0)
|
258 |
+
global_native_score = np.concatenate(global_native_score_list, 0)
|
259 |
+
ns_mean = native_score.mean()
|
260 |
+
ns_mean_print = np.format_float_positional(np.float32(ns_mean), unique=False, precision=4)
|
261 |
+
ns_std = native_score.std()
|
262 |
+
ns_std_print = np.format_float_positional(np.float32(ns_std), unique=False, precision=4)
|
263 |
+
|
264 |
+
global_ns_mean = global_native_score.mean()
|
265 |
+
global_ns_mean_print = np.format_float_positional(np.float32(global_ns_mean), unique=False, precision=4)
|
266 |
+
global_ns_std = global_native_score.std()
|
267 |
+
global_ns_std_print = np.format_float_positional(np.float32(global_ns_std), unique=False, precision=4)
|
268 |
+
|
269 |
+
ns_sample_size = native_score.shape[0]
|
270 |
+
np.savez(structure_sequence_score_file, score=native_score, global_score=global_native_score)
|
271 |
+
print(
|
272 |
+
f'Score for {name_}, mean: {ns_mean_print}, std: {ns_std_print}, sample size: {ns_sample_size}, Global Score for {name_}, mean: {global_ns_mean_print}, std: {global_ns_std_print}, sample size: {ns_sample_size}')
|
273 |
+
results.append(structure_sequence_score_file)
|
274 |
+
elif conditional_probs_only:
|
275 |
+
print(f'Calculating conditional probabilities for {name_}')
|
276 |
+
conditional_probs_only_file = base_folder + '/conditional_probs_only/' + batch_clones[0]['name']
|
277 |
+
log_conditional_probs_list = []
|
278 |
+
for j in range(NUM_BATCHES):
|
279 |
+
randn_1 = torch.randn(chain_M.shape, device=X.device)
|
280 |
+
log_conditional_probs = model.conditional_probs(X, S, mask, chain_M * chain_M_pos, residue_idx,
|
281 |
+
chain_encoding_all, randn_1,
|
282 |
+
conditional_probs_only_backbone)
|
283 |
+
log_conditional_probs_list.append(log_conditional_probs.cpu().numpy())
|
284 |
+
concat_log_p = np.concatenate(log_conditional_probs_list, 0) # [B, L, 21]
|
285 |
+
mask_out = (chain_M * chain_M_pos * mask)[0,].cpu().numpy()
|
286 |
+
np.savez(conditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(),
|
287 |
+
mask=mask[0,].cpu().numpy(), design_mask=mask_out)
|
288 |
+
elif unconditional_probs_only:
|
289 |
+
print(f'Calculating sequence unconditional probabilities for {name_}')
|
290 |
+
# 改
|
291 |
+
unconditional_probs_only_file = base_folder + '/unconditional_probs_only/' + batch_clones[0]['name'] + '.npz'
|
292 |
+
log_unconditional_probs_list = []
|
293 |
+
for j in range(NUM_BATCHES):
|
294 |
+
log_unconditional_probs = model.unconditional_probs(X, mask, residue_idx, chain_encoding_all)
|
295 |
+
log_unconditional_probs_list.append(log_unconditional_probs.cpu().numpy())
|
296 |
+
concat_log_p = np.concatenate(log_unconditional_probs_list, 0) # [B, L, 21]
|
297 |
+
mask_out = (chain_M * chain_M_pos * mask)[0,].cpu().numpy()
|
298 |
+
np.savez(unconditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(),
|
299 |
+
mask=mask[0,].cpu().numpy(), design_mask=mask_out)
|
300 |
+
results.append(unconditional_probs_only_file)
|
301 |
+
else:
|
302 |
+
randn_1 = torch.randn(chain_M.shape, device=X.device)
|
303 |
+
log_probs = model(X, S, mask, chain_M * chain_M_pos, residue_idx, chain_encoding_all, randn_1)
|
304 |
+
mask_for_loss = mask * chain_M * chain_M_pos
|
305 |
+
scores = _scores(S, log_probs, mask_for_loss) # score only the redesigned part
|
306 |
+
native_score = scores.cpu().data.numpy()
|
307 |
+
global_scores = _scores(S, log_probs, mask) # score the whole structure-sequence
|
308 |
+
global_native_score = global_scores.cpu().data.numpy()
|
309 |
+
# Generate some sequences
|
310 |
+
ali_file = base_folder + '/seqs/' + batch_clones[0]['name'] + '.fa'
|
311 |
+
score_file = base_folder + '/scores/' + batch_clones[0]['name'] + '.npz'
|
312 |
+
probs_file = base_folder + '/probs/' + batch_clones[0]['name'] + '.npz'
|
313 |
+
print(f'Generating sequences for: {name_}')
|
314 |
+
t0 = time.time()
|
315 |
+
with open(ali_file, 'w') as f:
|
316 |
+
for temp in temperatures:
|
317 |
+
for j in range(NUM_BATCHES):
|
318 |
+
randn_2 = torch.randn(chain_M.shape, device=X.device)
|
319 |
+
if tied_positions_dict == None:
|
320 |
+
sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx,
|
321 |
+
mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np,
|
322 |
+
bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos,
|
323 |
+
omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef,
|
324 |
+
pssm_bias=pssm_bias, pssm_multi=pssm_multi,
|
325 |
+
pssm_log_odds_flag=bool(pssm_log_odds_flag),
|
326 |
+
pssm_log_odds_mask=pssm_log_odds_mask,
|
327 |
+
pssm_bias_flag=bool(pssm_bias_flag),
|
328 |
+
bias_by_res=bias_by_res_all)
|
329 |
+
S_sample = sample_dict["S"]
|
330 |
+
else:
|
331 |
+
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx,
|
332 |
+
mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np,
|
333 |
+
bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos,
|
334 |
+
omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef,
|
335 |
+
pssm_bias=pssm_bias, pssm_multi=pssm_multi,
|
336 |
+
pssm_log_odds_flag=bool(pssm_log_odds_flag),
|
337 |
+
pssm_log_odds_mask=pssm_log_odds_mask,
|
338 |
+
pssm_bias_flag=bool(pssm_bias_flag),
|
339 |
+
tied_pos=tied_pos_list_of_lists_list[0],
|
340 |
+
tied_beta=tied_beta, bias_by_res=bias_by_res_all)
|
341 |
+
# Compute scores
|
342 |
+
S_sample = sample_dict["S"]
|
343 |
+
log_probs = model(X, S_sample, mask, chain_M * chain_M_pos, residue_idx, chain_encoding_all,
|
344 |
+
randn_2, use_input_decoding_order=True,
|
345 |
+
decoding_order=sample_dict["decoding_order"])
|
346 |
+
mask_for_loss = mask * chain_M * chain_M_pos
|
347 |
+
scores = _scores(S_sample, log_probs, mask_for_loss)
|
348 |
+
scores = scores.cpu().data.numpy()
|
349 |
+
|
350 |
+
global_scores = _scores(S_sample, log_probs, mask) # score the whole structure-sequence
|
351 |
+
global_scores = global_scores.cpu().data.numpy()
|
352 |
+
|
353 |
+
all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
|
354 |
+
all_log_probs_list.append(log_probs.cpu().data.numpy())
|
355 |
+
S_sample_list.append(S_sample.cpu().data.numpy())
|
356 |
+
for b_ix in range(BATCH_COPIES):
|
357 |
+
masked_chain_length_list = masked_chain_length_list_list[b_ix]
|
358 |
+
masked_list = masked_list_list[b_ix]
|
359 |
+
seq_recovery_rate = torch.sum(torch.sum(
|
360 |
+
torch.nn.functional.one_hot(S[b_ix], 21) * torch.nn.functional.one_hot(
|
361 |
+
S_sample[b_ix], 21), axis=-1) * mask_for_loss[b_ix]) / torch.sum(
|
362 |
+
mask_for_loss[b_ix])
|
363 |
+
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
|
364 |
+
score = scores[b_ix]
|
365 |
+
score_list.append(score)
|
366 |
+
global_score = global_scores[b_ix]
|
367 |
+
global_score_list.append(global_score)
|
368 |
+
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
|
369 |
+
if b_ix == 0 and j == 0 and temp == temperatures[0]:
|
370 |
+
start = 0
|
371 |
+
end = 0
|
372 |
+
list_of_AAs = []
|
373 |
+
for mask_l in masked_chain_length_list:
|
374 |
+
end += mask_l
|
375 |
+
list_of_AAs.append(native_seq[start:end])
|
376 |
+
start = end
|
377 |
+
native_seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
|
378 |
+
l0 = 0
|
379 |
+
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[
|
380 |
+
:-1]:
|
381 |
+
l0 += mc_length
|
382 |
+
native_seq = native_seq[:l0] + '/' + native_seq[l0:]
|
383 |
+
l0 += 1
|
384 |
+
sorted_masked_chain_letters = np.argsort(masked_list_list[0])
|
385 |
+
print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]
|
386 |
+
sorted_visible_chain_letters = np.argsort(visible_list_list[0])
|
387 |
+
print_visible_chains = [visible_list_list[0][i] for i in
|
388 |
+
sorted_visible_chain_letters]
|
389 |
+
native_score_print = np.format_float_positional(np.float32(native_score.mean()),
|
390 |
+
unique=False, precision=4)
|
391 |
+
global_native_score_print = np.format_float_positional(
|
392 |
+
np.float32(global_native_score.mean()), unique=False, precision=4)
|
393 |
+
script_dir = os.path.dirname(os.path.realpath(__file__))
|
394 |
+
try:
|
395 |
+
commit_str = subprocess.check_output(
|
396 |
+
f'git --git-dir {script_dir}/.git rev-parse HEAD',
|
397 |
+
shell=True).decode().strip()
|
398 |
+
except subprocess.CalledProcessError:
|
399 |
+
commit_str = 'unknown'
|
400 |
+
if ca_only:
|
401 |
+
print_model_name = 'CA_model_name'
|
402 |
+
else:
|
403 |
+
print_model_name = 'model_name'
|
404 |
+
f.write(
|
405 |
+
'>{}, score={}, global_score={}, fixed_chains={}, designed_chains={}, {}={}, git_hash={}, seed={}\n{}\n'.format(
|
406 |
+
name_, native_score_print, global_native_score_print, print_visible_chains,
|
407 |
+
print_masked_chains, print_model_name, model_name, commit_str, seed,
|
408 |
+
native_seq)) # write the native sequence
|
409 |
+
start = 0
|
410 |
+
end = 0
|
411 |
+
list_of_AAs = []
|
412 |
+
for mask_l in masked_chain_length_list:
|
413 |
+
end += mask_l
|
414 |
+
list_of_AAs.append(seq[start:end])
|
415 |
+
start = end
|
416 |
+
|
417 |
+
seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
|
418 |
+
l0 = 0
|
419 |
+
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:
|
420 |
+
l0 += mc_length
|
421 |
+
seq = seq[:l0] + '/' + seq[l0:]
|
422 |
+
l0 += 1
|
423 |
+
score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)
|
424 |
+
global_score_print = np.format_float_positional(np.float32(global_score), unique=False,
|
425 |
+
precision=4)
|
426 |
+
seq_rec_print = np.format_float_positional(
|
427 |
+
np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)
|
428 |
+
sample_number = j * BATCH_COPIES + b_ix + 1
|
429 |
+
f.write(
|
430 |
+
'>T={}, sample={}, score={}, global_score={}, seq_recovery={}\n{}\n'.format(temp,
|
431 |
+
sample_number,
|
432 |
+
score_print,
|
433 |
+
global_score_print,
|
434 |
+
seq_rec_print,
|
435 |
+
seq)) # write generated sequence
|
436 |
+
results.append(ali_file)
|
437 |
+
if save_score:
|
438 |
+
np.savez(score_file, score=np.array(score_list, np.float32),
|
439 |
+
global_score=np.array(global_score_list, np.float32))
|
440 |
+
if save_probs:
|
441 |
+
all_probs_concat = np.concatenate(all_probs_list)
|
442 |
+
all_log_probs_concat = np.concatenate(all_log_probs_list)
|
443 |
+
S_sample_concat = np.concatenate(S_sample_list)
|
444 |
+
np.savez(probs_file, probs=np.array(all_probs_concat, np.float32),
|
445 |
+
log_probs=np.array(all_log_probs_concat, np.float32),
|
446 |
+
S=np.array(S_sample_concat, np.int32), mask=mask_for_loss.cpu().data.numpy(),
|
447 |
+
chain_order=chain_list_list)
|
448 |
+
t1 = time.time()
|
449 |
+
dt = round(float(t1 - t0), 4)
|
450 |
+
num_seqs = len(temperatures) * NUM_BATCHES * BATCH_COPIES
|
451 |
+
total_length = X.shape[1]
|
452 |
+
print(f'{num_seqs} sequences of length {total_length} generated in {dt} seconds')
|
453 |
+
|
454 |
+
return results
|
455 |
+
|
456 |
+
|
457 |
+
# if __name__ == "__main__":
|
458 |
+
# argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
459 |
+
#
|
460 |
+
# argparser.add_argument("--ca_only", action="store_true", default=False,
|
461 |
+
# help="Parse CA-only structures and use CA-only models (default: false)")
|
462 |
+
# argparser.add_argument("--path_to_model_weights", type=str, default="", help="Path to model weights folder;")
|
463 |
+
# argparser.add_argument("--model_name", type=str, default="v_48_020",
|
464 |
+
# help="ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030; v_48_010=version with 48 edges 0.10A noise")
|
465 |
+
#
|
466 |
+
# argparser.add_argument("--seed", type=int, default=0, help="If set to 0 then a random seed will be picked;")
|
467 |
+
#
|
468 |
+
# argparser.add_argument("--save_score", type=int, default=0,
|
469 |
+
# help="0 for False, 1 for True; save score=-log_prob to npy files")
|
470 |
+
# argparser.add_argument("--save_probs", type=int, default=0,
|
471 |
+
# help="0 for False, 1 for True; save MPNN predicted probabilites per position")
|
472 |
+
#
|
473 |
+
# argparser.add_argument("--score_only", type=int, default=0,
|
474 |
+
# help="0 for False, 1 for True; score input backbone-sequence pairs")
|
475 |
+
#
|
476 |
+
# argparser.add_argument("--conditional_probs_only", type=int, default=0,
|
477 |
+
# help="0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)")
|
478 |
+
# argparser.add_argument("--conditional_probs_only_backbone", type=int, default=0,
|
479 |
+
# help="0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)")
|
480 |
+
# argparser.add_argument("--unconditional_probs_only", type=int, default=0,
|
481 |
+
# help="0 for False, 1 for True; output unconditional probabilities p(s_i given backbone) in one forward pass")
|
482 |
+
#
|
483 |
+
# argparser.add_argument("--backbone_noise", type=float, default=0.00,
|
484 |
+
# help="Standard deviation of Gaussian noise to add to backbone atoms")
|
485 |
+
# argparser.add_argument("--num_seq_per_target", type=int, default=1,
|
486 |
+
# help="Number of sequences to generate per target")
|
487 |
+
# argparser.add_argument("--batch_size", type=int, default=1,
|
488 |
+
# help="Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory")
|
489 |
+
# argparser.add_argument("--max_length", type=int, default=200000, help="Max sequence length")
|
490 |
+
# argparser.add_argument("--sampling_temp", type=str, default="0.1",
|
491 |
+
# help="A string of temperatures, 0.2 0.25 0.5. Sampling temperature for amino acids. Suggested values 0.1, 0.15, 0.2, 0.25, 0.3. Higher values will lead to more diversity.")
|
492 |
+
#
|
493 |
+
# argparser.add_argument("--out_folder", type=str, help="Path to a folder to output sequences, e.g. /home/out/")
|
494 |
+
# argparser.add_argument("--pdb_path", type=str, default='', help="Path to a single PDB to be designed")
|
495 |
+
# argparser.add_argument("--pdb_path_chains", type=str, default='',
|
496 |
+
# help="Define which chains need to be designed for a single PDB ")
|
497 |
+
# argparser.add_argument("--jsonl_path", type=str, help="Path to a folder with parsed pdb into jsonl")
|
498 |
+
# argparser.add_argument("--chain_id_jsonl", type=str, default='',
|
499 |
+
# help="Path to a dictionary specifying which chains need to be designed and which ones are fixed, if not specied all chains will be designed.")
|
500 |
+
# argparser.add_argument("--fixed_positions_jsonl", type=str, default='',
|
501 |
+
# help="Path to a dictionary with fixed positions")
|
502 |
+
# argparser.add_argument("--omit_AAs", type=list, default='X',
|
503 |
+
# help="Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.")
|
504 |
+
# argparser.add_argument("--bias_AA_jsonl", type=str, default='',
|
505 |
+
# help="Path to a dictionary which specifies AA composion bias if neededi, e.g. {A: -1.1, F: 0.7} would make A less likely and F more likely.")
|
506 |
+
#
|
507 |
+
# argparser.add_argument("--bias_by_res_jsonl", default='', help="Path to dictionary with per position bias.")
|
508 |
+
# argparser.add_argument("--omit_AA_jsonl", type=str, default='',
|
509 |
+
# help="Path to a dictionary which specifies which amino acids need to be omited from design at specific chain indices")
|
510 |
+
# argparser.add_argument("--pssm_jsonl", type=str, default='', help="Path to a dictionary with pssm")
|
511 |
+
# argparser.add_argument("--pssm_multi", type=float, default=0.0,
|
512 |
+
# help="A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions")
|
513 |
+
# argparser.add_argument("--pssm_threshold", type=float, default=0.0,
|
514 |
+
# help="A value between -inf + inf to restric per position AAs")
|
515 |
+
# argparser.add_argument("--pssm_log_odds_flag", type=int, default=0, help="0 for False, 1 for True")
|
516 |
+
# argparser.add_argument("--pssm_bias_flag", type=int, default=0, help="0 for False, 1 for True")
|
517 |
+
#
|
518 |
+
# argparser.add_argument("--tied_positions_jsonl", type=str, default='',
|
519 |
+
# help="Path to a dictionary with tied positions")
|
520 |
+
#
|
521 |
+
# args = argparser.parse_args()
|
522 |
+
# main(args)
|
ProteinMPNN-main/protein_mpnn_utils.py
ADDED
@@ -0,0 +1,1363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function
|
2 |
+
import json, time, os, sys, glob
|
3 |
+
import shutil
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import optim
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from torch.utils.data.dataset import random_split, Subset
|
9 |
+
|
10 |
+
import copy
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import random
|
14 |
+
import itertools
|
15 |
+
|
16 |
+
#A number of functions/classes are adopted from: https://github.com/jingraham/neurips19-graph-protein-design
|
17 |
+
|
18 |
+
def _scores(S, log_probs, mask):
|
19 |
+
""" Negative log probabilities """
|
20 |
+
criterion = torch.nn.NLLLoss(reduction='none')
|
21 |
+
loss = criterion(
|
22 |
+
log_probs.contiguous().view(-1,log_probs.size(-1)),
|
23 |
+
S.contiguous().view(-1)
|
24 |
+
).view(S.size())
|
25 |
+
scores = torch.sum(loss * mask, dim=-1) / torch.sum(mask, dim=-1)
|
26 |
+
return scores
|
27 |
+
|
28 |
+
def _S_to_seq(S, mask):
|
29 |
+
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
|
30 |
+
seq = ''.join([alphabet[c] for c, m in zip(S.tolist(), mask.tolist()) if m > 0])
|
31 |
+
return seq
|
32 |
+
|
33 |
+
def parse_PDB_biounits(x, atoms=['N','CA','C'], chain=None):
|
34 |
+
'''
|
35 |
+
input: x = PDB filename
|
36 |
+
atoms = atoms to extract (optional)
|
37 |
+
output: (length, atoms, coords=(x,y,z)), sequence
|
38 |
+
'''
|
39 |
+
|
40 |
+
alpha_1 = list("ARNDCQEGHILKMFPSTWYV-")
|
41 |
+
states = len(alpha_1)
|
42 |
+
alpha_3 = ['ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE',
|
43 |
+
'LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL','GAP']
|
44 |
+
|
45 |
+
aa_1_N = {a:n for n,a in enumerate(alpha_1)}
|
46 |
+
aa_3_N = {a:n for n,a in enumerate(alpha_3)}
|
47 |
+
aa_N_1 = {n:a for n,a in enumerate(alpha_1)}
|
48 |
+
aa_1_3 = {a:b for a,b in zip(alpha_1,alpha_3)}
|
49 |
+
aa_3_1 = {b:a for a,b in zip(alpha_1,alpha_3)}
|
50 |
+
|
51 |
+
def AA_to_N(x):
|
52 |
+
# ["ARND"] -> [[0,1,2,3]]
|
53 |
+
x = np.array(x);
|
54 |
+
if x.ndim == 0: x = x[None]
|
55 |
+
return [[aa_1_N.get(a, states-1) for a in y] for y in x]
|
56 |
+
|
57 |
+
def N_to_AA(x):
|
58 |
+
# [[0,1,2,3]] -> ["ARND"]
|
59 |
+
x = np.array(x);
|
60 |
+
if x.ndim == 1: x = x[None]
|
61 |
+
return ["".join([aa_N_1.get(a,"-") for a in y]) for y in x]
|
62 |
+
|
63 |
+
xyz,seq,min_resn,max_resn = {},{},1e6,-1e6
|
64 |
+
for line in open(x,"rb"):
|
65 |
+
line = line.decode("utf-8","ignore").rstrip()
|
66 |
+
|
67 |
+
if line[:6] == "HETATM" and line[17:17+3] == "MSE":
|
68 |
+
line = line.replace("HETATM","ATOM ")
|
69 |
+
line = line.replace("MSE","MET")
|
70 |
+
|
71 |
+
if line[:4] == "ATOM":
|
72 |
+
ch = line[21:22]
|
73 |
+
if ch == chain or chain is None:
|
74 |
+
atom = line[12:12+4].strip()
|
75 |
+
resi = line[17:17+3]
|
76 |
+
resn = line[22:22+5].strip()
|
77 |
+
x,y,z = [float(line[i:(i+8)]) for i in [30,38,46]]
|
78 |
+
|
79 |
+
if resn[-1].isalpha():
|
80 |
+
resa,resn = resn[-1],int(resn[:-1])-1
|
81 |
+
else:
|
82 |
+
resa,resn = "",int(resn)-1
|
83 |
+
# resn = int(resn)
|
84 |
+
if resn < min_resn:
|
85 |
+
min_resn = resn
|
86 |
+
if resn > max_resn:
|
87 |
+
max_resn = resn
|
88 |
+
if resn not in xyz:
|
89 |
+
xyz[resn] = {}
|
90 |
+
if resa not in xyz[resn]:
|
91 |
+
xyz[resn][resa] = {}
|
92 |
+
if resn not in seq:
|
93 |
+
seq[resn] = {}
|
94 |
+
if resa not in seq[resn]:
|
95 |
+
seq[resn][resa] = resi
|
96 |
+
|
97 |
+
if atom not in xyz[resn][resa]:
|
98 |
+
xyz[resn][resa][atom] = np.array([x,y,z])
|
99 |
+
|
100 |
+
# convert to numpy arrays, fill in missing values
|
101 |
+
seq_,xyz_ = [],[]
|
102 |
+
try:
|
103 |
+
for resn in range(min_resn,max_resn+1):
|
104 |
+
if resn in seq:
|
105 |
+
for k in sorted(seq[resn]): seq_.append(aa_3_N.get(seq[resn][k],20))
|
106 |
+
else: seq_.append(20)
|
107 |
+
if resn in xyz:
|
108 |
+
for k in sorted(xyz[resn]):
|
109 |
+
for atom in atoms:
|
110 |
+
if atom in xyz[resn][k]: xyz_.append(xyz[resn][k][atom])
|
111 |
+
else: xyz_.append(np.full(3,np.nan))
|
112 |
+
else:
|
113 |
+
for atom in atoms: xyz_.append(np.full(3,np.nan))
|
114 |
+
return np.array(xyz_).reshape(-1,len(atoms),3), N_to_AA(np.array(seq_))
|
115 |
+
except TypeError:
|
116 |
+
return 'no_chain', 'no_chain'
|
117 |
+
|
118 |
+
def parse_PDB(path_to_pdb, input_chain_list=None, ca_only=False):
|
119 |
+
c=0
|
120 |
+
pdb_dict_list = []
|
121 |
+
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
|
122 |
+
extra_alphabet = [str(item) for item in list(np.arange(300))]
|
123 |
+
chain_alphabet = init_alphabet + extra_alphabet
|
124 |
+
|
125 |
+
if input_chain_list:
|
126 |
+
chain_alphabet = input_chain_list
|
127 |
+
|
128 |
+
|
129 |
+
biounit_names = [path_to_pdb]
|
130 |
+
for biounit in biounit_names:
|
131 |
+
my_dict = {}
|
132 |
+
s = 0
|
133 |
+
concat_seq = ''
|
134 |
+
concat_N = []
|
135 |
+
concat_CA = []
|
136 |
+
concat_C = []
|
137 |
+
concat_O = []
|
138 |
+
concat_mask = []
|
139 |
+
coords_dict = {}
|
140 |
+
for letter in chain_alphabet:
|
141 |
+
if ca_only:
|
142 |
+
sidechain_atoms = ['CA']
|
143 |
+
else:
|
144 |
+
sidechain_atoms = ['N', 'CA', 'C', 'O']
|
145 |
+
xyz, seq = parse_PDB_biounits(biounit, atoms=sidechain_atoms, chain=letter)
|
146 |
+
if type(xyz) != str:
|
147 |
+
concat_seq += seq[0]
|
148 |
+
my_dict['seq_chain_'+letter]=seq[0]
|
149 |
+
coords_dict_chain = {}
|
150 |
+
if ca_only:
|
151 |
+
coords_dict_chain['CA_chain_'+letter]=xyz.tolist()
|
152 |
+
else:
|
153 |
+
coords_dict_chain['N_chain_' + letter] = xyz[:, 0, :].tolist()
|
154 |
+
coords_dict_chain['CA_chain_' + letter] = xyz[:, 1, :].tolist()
|
155 |
+
coords_dict_chain['C_chain_' + letter] = xyz[:, 2, :].tolist()
|
156 |
+
coords_dict_chain['O_chain_' + letter] = xyz[:, 3, :].tolist()
|
157 |
+
my_dict['coords_chain_'+letter]=coords_dict_chain
|
158 |
+
s += 1
|
159 |
+
# g改
|
160 |
+
fi = biounit.rfind("\\")
|
161 |
+
my_dict['name']=biounit[(fi+1):(fi+5)]
|
162 |
+
my_dict['num_of_chains'] = s
|
163 |
+
my_dict['seq'] = concat_seq
|
164 |
+
if s <= len(chain_alphabet):
|
165 |
+
pdb_dict_list.append(my_dict)
|
166 |
+
c+=1
|
167 |
+
return pdb_dict_list
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
def tied_featurize(batch, device, chain_dict, fixed_position_dict=None, omit_AA_dict=None, tied_positions_dict=None, pssm_dict=None, bias_by_res_dict=None, ca_only=False):
|
172 |
+
""" Pack and pad batch into torch tensors """
|
173 |
+
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
|
174 |
+
B = len(batch)
|
175 |
+
lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths
|
176 |
+
L_max = max([len(b['seq']) for b in batch])
|
177 |
+
if ca_only:
|
178 |
+
X = np.zeros([B, L_max, 1, 3])
|
179 |
+
else:
|
180 |
+
X = np.zeros([B, L_max, 4, 3])
|
181 |
+
residue_idx = -100*np.ones([B, L_max], dtype=np.int32)
|
182 |
+
chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
|
183 |
+
pssm_coef_all = np.zeros([B, L_max], dtype=np.float32) #1.0 for the bits that need to be predicted
|
184 |
+
pssm_bias_all = np.zeros([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
|
185 |
+
pssm_log_odds_all = 10000.0*np.ones([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
|
186 |
+
chain_M_pos = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
|
187 |
+
bias_by_res_all = np.zeros([B, L_max, 21], dtype=np.float32)
|
188 |
+
chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
|
189 |
+
S = np.zeros([B, L_max], dtype=np.int32)
|
190 |
+
omit_AA_mask = np.zeros([B, L_max, len(alphabet)], dtype=np.int32)
|
191 |
+
# Build the batch
|
192 |
+
letter_list_list = []
|
193 |
+
visible_list_list = []
|
194 |
+
masked_list_list = []
|
195 |
+
masked_chain_length_list_list = []
|
196 |
+
tied_pos_list_of_lists_list = []
|
197 |
+
#shuffle all chains before the main loop
|
198 |
+
for i, b in enumerate(batch):
|
199 |
+
if chain_dict != None:
|
200 |
+
masked_chains, visible_chains = chain_dict[b['name']] #masked_chains a list of chain letters to predict [A, D, F]
|
201 |
+
else:
|
202 |
+
masked_chains = [item[-1:] for item in list(b) if item[:10]=='seq_chain_']
|
203 |
+
visible_chains = []
|
204 |
+
num_chains = b['num_of_chains']
|
205 |
+
all_chains = masked_chains + visible_chains
|
206 |
+
#random.shuffle(all_chains)
|
207 |
+
for i, b in enumerate(batch):
|
208 |
+
mask_dict = {}
|
209 |
+
a = 0
|
210 |
+
x_chain_list = []
|
211 |
+
chain_mask_list = []
|
212 |
+
chain_seq_list = []
|
213 |
+
chain_encoding_list = []
|
214 |
+
c = 1
|
215 |
+
letter_list = []
|
216 |
+
global_idx_start_list = [0]
|
217 |
+
visible_list = []
|
218 |
+
masked_list = []
|
219 |
+
masked_chain_length_list = []
|
220 |
+
fixed_position_mask_list = []
|
221 |
+
omit_AA_mask_list = []
|
222 |
+
pssm_coef_list = []
|
223 |
+
pssm_bias_list = []
|
224 |
+
pssm_log_odds_list = []
|
225 |
+
bias_by_res_list = []
|
226 |
+
l0 = 0
|
227 |
+
l1 = 0
|
228 |
+
for step, letter in enumerate(all_chains):
|
229 |
+
if letter in visible_chains:
|
230 |
+
letter_list.append(letter)
|
231 |
+
visible_list.append(letter)
|
232 |
+
chain_seq = b[f'seq_chain_{letter}']
|
233 |
+
chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
|
234 |
+
chain_length = len(chain_seq)
|
235 |
+
global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
|
236 |
+
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
|
237 |
+
chain_mask = np.zeros(chain_length) #0.0 for visible chains
|
238 |
+
if ca_only:
|
239 |
+
x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
|
240 |
+
if len(x_chain.shape) == 2:
|
241 |
+
x_chain = x_chain[:,None,:]
|
242 |
+
else:
|
243 |
+
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
|
244 |
+
x_chain_list.append(x_chain)
|
245 |
+
chain_mask_list.append(chain_mask)
|
246 |
+
chain_seq_list.append(chain_seq)
|
247 |
+
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
|
248 |
+
l1 += chain_length
|
249 |
+
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
|
250 |
+
l0 += chain_length
|
251 |
+
c+=1
|
252 |
+
fixed_position_mask = np.ones(chain_length)
|
253 |
+
fixed_position_mask_list.append(fixed_position_mask)
|
254 |
+
omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
|
255 |
+
omit_AA_mask_list.append(omit_AA_mask_temp)
|
256 |
+
pssm_coef = np.zeros(chain_length)
|
257 |
+
pssm_bias = np.zeros([chain_length, 21])
|
258 |
+
pssm_log_odds = 10000.0*np.ones([chain_length, 21])
|
259 |
+
pssm_coef_list.append(pssm_coef)
|
260 |
+
pssm_bias_list.append(pssm_bias)
|
261 |
+
pssm_log_odds_list.append(pssm_log_odds)
|
262 |
+
bias_by_res_list.append(np.zeros([chain_length, 21]))
|
263 |
+
if letter in masked_chains:
|
264 |
+
masked_list.append(letter)
|
265 |
+
letter_list.append(letter)
|
266 |
+
chain_seq = b[f'seq_chain_{letter}']
|
267 |
+
chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
|
268 |
+
chain_length = len(chain_seq)
|
269 |
+
global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
|
270 |
+
masked_chain_length_list.append(chain_length)
|
271 |
+
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
|
272 |
+
chain_mask = np.ones(chain_length) #1.0 for masked
|
273 |
+
if ca_only:
|
274 |
+
x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
|
275 |
+
if len(x_chain.shape) == 2:
|
276 |
+
x_chain = x_chain[:,None,:]
|
277 |
+
else:
|
278 |
+
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
|
279 |
+
x_chain_list.append(x_chain)
|
280 |
+
chain_mask_list.append(chain_mask)
|
281 |
+
chain_seq_list.append(chain_seq)
|
282 |
+
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
|
283 |
+
l1 += chain_length
|
284 |
+
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
|
285 |
+
l0 += chain_length
|
286 |
+
c+=1
|
287 |
+
fixed_position_mask = np.ones(chain_length)
|
288 |
+
if fixed_position_dict!=None:
|
289 |
+
fixed_pos_list = fixed_position_dict[b['name']][letter]
|
290 |
+
if fixed_pos_list:
|
291 |
+
fixed_position_mask[np.array(fixed_pos_list)-1] = 0.0
|
292 |
+
fixed_position_mask_list.append(fixed_position_mask)
|
293 |
+
omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
|
294 |
+
if omit_AA_dict!=None:
|
295 |
+
for item in omit_AA_dict[b['name']][letter]:
|
296 |
+
idx_AA = np.array(item[0])-1
|
297 |
+
AA_idx = np.array([np.argwhere(np.array(list(alphabet))== AA)[0][0] for AA in item[1]]).repeat(idx_AA.shape[0])
|
298 |
+
idx_ = np.array([[a, b] for a in idx_AA for b in AA_idx])
|
299 |
+
omit_AA_mask_temp[idx_[:,0], idx_[:,1]] = 1
|
300 |
+
omit_AA_mask_list.append(omit_AA_mask_temp)
|
301 |
+
pssm_coef = np.zeros(chain_length)
|
302 |
+
pssm_bias = np.zeros([chain_length, 21])
|
303 |
+
pssm_log_odds = 10000.0*np.ones([chain_length, 21])
|
304 |
+
if pssm_dict:
|
305 |
+
if pssm_dict[b['name']][letter]:
|
306 |
+
pssm_coef = pssm_dict[b['name']][letter]['pssm_coef']
|
307 |
+
pssm_bias = pssm_dict[b['name']][letter]['pssm_bias']
|
308 |
+
pssm_log_odds = pssm_dict[b['name']][letter]['pssm_log_odds']
|
309 |
+
pssm_coef_list.append(pssm_coef)
|
310 |
+
pssm_bias_list.append(pssm_bias)
|
311 |
+
pssm_log_odds_list.append(pssm_log_odds)
|
312 |
+
if bias_by_res_dict:
|
313 |
+
bias_by_res_list.append(bias_by_res_dict[b['name']][letter])
|
314 |
+
else:
|
315 |
+
bias_by_res_list.append(np.zeros([chain_length, 21]))
|
316 |
+
|
317 |
+
|
318 |
+
letter_list_np = np.array(letter_list)
|
319 |
+
tied_pos_list_of_lists = []
|
320 |
+
tied_beta = np.ones(L_max)
|
321 |
+
if tied_positions_dict!=None:
|
322 |
+
tied_pos_list = tied_positions_dict[b['name']]
|
323 |
+
if tied_pos_list:
|
324 |
+
set_chains_tied = set(list(itertools.chain(*[list(item) for item in tied_pos_list])))
|
325 |
+
for tied_item in tied_pos_list:
|
326 |
+
one_list = []
|
327 |
+
for k, v in tied_item.items():
|
328 |
+
start_idx = global_idx_start_list[np.argwhere(letter_list_np == k)[0][0]]
|
329 |
+
if isinstance(v[0], list):
|
330 |
+
for v_count in range(len(v[0])):
|
331 |
+
one_list.append(start_idx+v[0][v_count]-1)#make 0 to be the first
|
332 |
+
tied_beta[start_idx+v[0][v_count]-1] = v[1][v_count]
|
333 |
+
else:
|
334 |
+
for v_ in v:
|
335 |
+
one_list.append(start_idx+v_-1)#make 0 to be the first
|
336 |
+
tied_pos_list_of_lists.append(one_list)
|
337 |
+
tied_pos_list_of_lists_list.append(tied_pos_list_of_lists)
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
x = np.concatenate(x_chain_list,0) #[L, 4, 3]
|
342 |
+
all_sequence = "".join(chain_seq_list)
|
343 |
+
m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted
|
344 |
+
chain_encoding = np.concatenate(chain_encoding_list,0)
|
345 |
+
m_pos = np.concatenate(fixed_position_mask_list,0) #[L,], 1.0 for places that need to be predicted
|
346 |
+
|
347 |
+
pssm_coef_ = np.concatenate(pssm_coef_list,0) #[L,], 1.0 for places that need to be predicted
|
348 |
+
pssm_bias_ = np.concatenate(pssm_bias_list,0) #[L,], 1.0 for places that need to be predicted
|
349 |
+
pssm_log_odds_ = np.concatenate(pssm_log_odds_list,0) #[L,], 1.0 for places that need to be predicted
|
350 |
+
|
351 |
+
bias_by_res_ = np.concatenate(bias_by_res_list, 0) #[L,21], 0.0 for places where AA frequencies don't need to be tweaked
|
352 |
+
|
353 |
+
l = len(all_sequence)
|
354 |
+
x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, ))
|
355 |
+
X[i,:,:,:] = x_pad
|
356 |
+
|
357 |
+
m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
|
358 |
+
m_pos_pad = np.pad(m_pos, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
|
359 |
+
omit_AA_mask_pad = np.pad(np.concatenate(omit_AA_mask_list,0), [[0,L_max-l]], 'constant', constant_values=(0.0, ))
|
360 |
+
chain_M[i,:] = m_pad
|
361 |
+
chain_M_pos[i,:] = m_pos_pad
|
362 |
+
omit_AA_mask[i,] = omit_AA_mask_pad
|
363 |
+
|
364 |
+
chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
|
365 |
+
chain_encoding_all[i,:] = chain_encoding_pad
|
366 |
+
|
367 |
+
pssm_coef_pad = np.pad(pssm_coef_, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
|
368 |
+
pssm_bias_pad = np.pad(pssm_bias_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
|
369 |
+
pssm_log_odds_pad = np.pad(pssm_log_odds_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
|
370 |
+
|
371 |
+
pssm_coef_all[i,:] = pssm_coef_pad
|
372 |
+
pssm_bias_all[i,:] = pssm_bias_pad
|
373 |
+
pssm_log_odds_all[i,:] = pssm_log_odds_pad
|
374 |
+
|
375 |
+
bias_by_res_pad = np.pad(bias_by_res_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
|
376 |
+
bias_by_res_all[i,:] = bias_by_res_pad
|
377 |
+
|
378 |
+
# Convert to labels
|
379 |
+
indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32)
|
380 |
+
S[i, :l] = indices
|
381 |
+
letter_list_list.append(letter_list)
|
382 |
+
visible_list_list.append(visible_list)
|
383 |
+
masked_list_list.append(masked_list)
|
384 |
+
masked_chain_length_list_list.append(masked_chain_length_list)
|
385 |
+
|
386 |
+
|
387 |
+
isnan = np.isnan(X)
|
388 |
+
mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32)
|
389 |
+
X[isnan] = 0.
|
390 |
+
|
391 |
+
# Conversion
|
392 |
+
pssm_coef_all = torch.from_numpy(pssm_coef_all).to(dtype=torch.float32, device=device)
|
393 |
+
pssm_bias_all = torch.from_numpy(pssm_bias_all).to(dtype=torch.float32, device=device)
|
394 |
+
pssm_log_odds_all = torch.from_numpy(pssm_log_odds_all).to(dtype=torch.float32, device=device)
|
395 |
+
|
396 |
+
tied_beta = torch.from_numpy(tied_beta).to(dtype=torch.float32, device=device)
|
397 |
+
|
398 |
+
jumps = ((residue_idx[:,1:]-residue_idx[:,:-1])==1).astype(np.float32)
|
399 |
+
bias_by_res_all = torch.from_numpy(bias_by_res_all).to(dtype=torch.float32, device=device)
|
400 |
+
phi_mask = np.pad(jumps, [[0,0],[1,0]])
|
401 |
+
psi_mask = np.pad(jumps, [[0,0],[0,1]])
|
402 |
+
omega_mask = np.pad(jumps, [[0,0],[0,1]])
|
403 |
+
dihedral_mask = np.concatenate([phi_mask[:,:,None], psi_mask[:,:,None], omega_mask[:,:,None]], -1) #[B,L,3]
|
404 |
+
dihedral_mask = torch.from_numpy(dihedral_mask).to(dtype=torch.float32, device=device)
|
405 |
+
residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device)
|
406 |
+
S = torch.from_numpy(S).to(dtype=torch.long,device=device)
|
407 |
+
X = torch.from_numpy(X).to(dtype=torch.float32, device=device)
|
408 |
+
mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device)
|
409 |
+
chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device)
|
410 |
+
chain_M_pos = torch.from_numpy(chain_M_pos).to(dtype=torch.float32, device=device)
|
411 |
+
omit_AA_mask = torch.from_numpy(omit_AA_mask).to(dtype=torch.float32, device=device)
|
412 |
+
chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device)
|
413 |
+
if ca_only:
|
414 |
+
X_out = X[:,:,0]
|
415 |
+
else:
|
416 |
+
X_out = X
|
417 |
+
return X_out, S, mask, lengths, chain_M, chain_encoding_all, letter_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef_all, pssm_bias_all, pssm_log_odds_all, bias_by_res_all, tied_beta
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
def loss_nll(S, log_probs, mask):
|
422 |
+
""" Negative log probabilities """
|
423 |
+
criterion = torch.nn.NLLLoss(reduction='none')
|
424 |
+
loss = criterion(
|
425 |
+
log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1)
|
426 |
+
).view(S.size())
|
427 |
+
loss_av = torch.sum(loss * mask) / torch.sum(mask)
|
428 |
+
return loss, loss_av
|
429 |
+
|
430 |
+
|
431 |
+
def loss_smoothed(S, log_probs, mask, weight=0.1):
|
432 |
+
""" Negative log probabilities """
|
433 |
+
S_onehot = torch.nn.functional.one_hot(S, 21).float()
|
434 |
+
|
435 |
+
# Label smoothing
|
436 |
+
S_onehot = S_onehot + weight / float(S_onehot.size(-1))
|
437 |
+
S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True)
|
438 |
+
|
439 |
+
loss = -(S_onehot * log_probs).sum(-1)
|
440 |
+
loss_av = torch.sum(loss * mask) / torch.sum(mask)
|
441 |
+
return loss, loss_av
|
442 |
+
|
443 |
+
class StructureDataset():
|
444 |
+
def __init__(self, jsonl_file, verbose=True, truncate=None, max_length=100,
|
445 |
+
alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
|
446 |
+
alphabet_set = set([a for a in alphabet])
|
447 |
+
discard_count = {
|
448 |
+
'bad_chars': 0,
|
449 |
+
'too_long': 0,
|
450 |
+
'bad_seq_length': 0
|
451 |
+
}
|
452 |
+
|
453 |
+
with open(jsonl_file) as f:
|
454 |
+
self.data = []
|
455 |
+
|
456 |
+
lines = f.readlines()
|
457 |
+
start = time.time()
|
458 |
+
for i, line in enumerate(lines):
|
459 |
+
entry = json.loads(line)
|
460 |
+
seq = entry['seq']
|
461 |
+
name = entry['name']
|
462 |
+
|
463 |
+
# Convert raw coords to np arrays
|
464 |
+
#for key, val in entry['coords'].items():
|
465 |
+
# entry['coords'][key] = np.asarray(val)
|
466 |
+
|
467 |
+
# Check if in alphabet
|
468 |
+
bad_chars = set([s for s in seq]).difference(alphabet_set)
|
469 |
+
if len(bad_chars) == 0:
|
470 |
+
if len(entry['seq']) <= max_length:
|
471 |
+
if True:
|
472 |
+
self.data.append(entry)
|
473 |
+
else:
|
474 |
+
discard_count['bad_seq_length'] += 1
|
475 |
+
else:
|
476 |
+
discard_count['too_long'] += 1
|
477 |
+
else:
|
478 |
+
print(name, bad_chars, entry['seq'])
|
479 |
+
discard_count['bad_chars'] += 1
|
480 |
+
|
481 |
+
# Truncate early
|
482 |
+
if truncate is not None and len(self.data) == truncate:
|
483 |
+
return
|
484 |
+
|
485 |
+
if verbose and (i + 1) % 1000 == 0:
|
486 |
+
elapsed = time.time() - start
|
487 |
+
print('{} entries ({} loaded) in {:.1f} s'.format(len(self.data), i+1, elapsed))
|
488 |
+
|
489 |
+
print('discarded', discard_count)
|
490 |
+
def __len__(self):
|
491 |
+
return len(self.data)
|
492 |
+
|
493 |
+
def __getitem__(self, idx):
|
494 |
+
return self.data[idx]
|
495 |
+
|
496 |
+
|
497 |
+
class StructureDatasetPDB():
|
498 |
+
def __init__(self, pdb_dict_list, verbose=True, truncate=None, max_length=100,
|
499 |
+
alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
|
500 |
+
alphabet_set = set([a for a in alphabet])
|
501 |
+
discard_count = {
|
502 |
+
'bad_chars': 0,
|
503 |
+
'too_long': 0,
|
504 |
+
'bad_seq_length': 0
|
505 |
+
}
|
506 |
+
|
507 |
+
self.data = []
|
508 |
+
|
509 |
+
start = time.time()
|
510 |
+
for i, entry in enumerate(pdb_dict_list):
|
511 |
+
seq = entry['seq']
|
512 |
+
name = entry['name']
|
513 |
+
|
514 |
+
bad_chars = set([s for s in seq]).difference(alphabet_set)
|
515 |
+
if len(bad_chars) == 0:
|
516 |
+
if len(entry['seq']) <= max_length:
|
517 |
+
self.data.append(entry)
|
518 |
+
else:
|
519 |
+
discard_count['too_long'] += 1
|
520 |
+
else:
|
521 |
+
discard_count['bad_chars'] += 1
|
522 |
+
|
523 |
+
# Truncate early
|
524 |
+
if truncate is not None and len(self.data) == truncate:
|
525 |
+
return
|
526 |
+
|
527 |
+
if verbose and (i + 1) % 1000 == 0:
|
528 |
+
elapsed = time.time() - start
|
529 |
+
|
530 |
+
#print('Discarded', discard_count)
|
531 |
+
def __len__(self):
|
532 |
+
return len(self.data)
|
533 |
+
|
534 |
+
def __getitem__(self, idx):
|
535 |
+
return self.data[idx]
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
class StructureLoader():
|
540 |
+
def __init__(self, dataset, batch_size=100, shuffle=True,
|
541 |
+
collate_fn=lambda x:x, drop_last=False):
|
542 |
+
self.dataset = dataset
|
543 |
+
self.size = len(dataset)
|
544 |
+
self.lengths = [len(dataset[i]['seq']) for i in range(self.size)]
|
545 |
+
self.batch_size = batch_size
|
546 |
+
sorted_ix = np.argsort(self.lengths)
|
547 |
+
|
548 |
+
# Cluster into batches of similar sizes
|
549 |
+
clusters, batch = [], []
|
550 |
+
batch_max = 0
|
551 |
+
for ix in sorted_ix:
|
552 |
+
size = self.lengths[ix]
|
553 |
+
if size * (len(batch) + 1) <= self.batch_size:
|
554 |
+
batch.append(ix)
|
555 |
+
batch_max = size
|
556 |
+
else:
|
557 |
+
clusters.append(batch)
|
558 |
+
batch, batch_max = [], 0
|
559 |
+
if len(batch) > 0:
|
560 |
+
clusters.append(batch)
|
561 |
+
self.clusters = clusters
|
562 |
+
|
563 |
+
def __len__(self):
|
564 |
+
return len(self.clusters)
|
565 |
+
|
566 |
+
def __iter__(self):
|
567 |
+
np.random.shuffle(self.clusters)
|
568 |
+
for b_idx in self.clusters:
|
569 |
+
batch = [self.dataset[i] for i in b_idx]
|
570 |
+
yield batch
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
# The following gather functions
|
575 |
+
def gather_edges(edges, neighbor_idx):
|
576 |
+
# Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C]
|
577 |
+
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
|
578 |
+
edge_features = torch.gather(edges, 2, neighbors)
|
579 |
+
return edge_features
|
580 |
+
|
581 |
+
def gather_nodes(nodes, neighbor_idx):
|
582 |
+
# Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C]
|
583 |
+
# Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C]
|
584 |
+
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1))
|
585 |
+
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2))
|
586 |
+
# Gather and re-pack
|
587 |
+
neighbor_features = torch.gather(nodes, 1, neighbors_flat)
|
588 |
+
neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1])
|
589 |
+
return neighbor_features
|
590 |
+
|
591 |
+
def gather_nodes_t(nodes, neighbor_idx):
|
592 |
+
# Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C]
|
593 |
+
idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2))
|
594 |
+
neighbor_features = torch.gather(nodes, 1, idx_flat)
|
595 |
+
return neighbor_features
|
596 |
+
|
597 |
+
def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx):
|
598 |
+
h_nodes = gather_nodes(h_nodes, E_idx)
|
599 |
+
h_nn = torch.cat([h_neighbors, h_nodes], -1)
|
600 |
+
return h_nn
|
601 |
+
|
602 |
+
|
603 |
+
class EncLayer(nn.Module):
|
604 |
+
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
|
605 |
+
super(EncLayer, self).__init__()
|
606 |
+
self.num_hidden = num_hidden
|
607 |
+
self.num_in = num_in
|
608 |
+
self.scale = scale
|
609 |
+
self.dropout1 = nn.Dropout(dropout)
|
610 |
+
self.dropout2 = nn.Dropout(dropout)
|
611 |
+
self.dropout3 = nn.Dropout(dropout)
|
612 |
+
self.norm1 = nn.LayerNorm(num_hidden)
|
613 |
+
self.norm2 = nn.LayerNorm(num_hidden)
|
614 |
+
self.norm3 = nn.LayerNorm(num_hidden)
|
615 |
+
|
616 |
+
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
|
617 |
+
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
|
618 |
+
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
|
619 |
+
self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
|
620 |
+
self.W12 = nn.Linear(num_hidden, num_hidden, bias=True)
|
621 |
+
self.W13 = nn.Linear(num_hidden, num_hidden, bias=True)
|
622 |
+
self.act = torch.nn.GELU()
|
623 |
+
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
|
624 |
+
|
625 |
+
def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None):
|
626 |
+
""" Parallel computation of full transformer layer """
|
627 |
+
|
628 |
+
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
|
629 |
+
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
|
630 |
+
h_EV = torch.cat([h_V_expand, h_EV], -1)
|
631 |
+
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
|
632 |
+
if mask_attend is not None:
|
633 |
+
h_message = mask_attend.unsqueeze(-1) * h_message
|
634 |
+
dh = torch.sum(h_message, -2) / self.scale
|
635 |
+
h_V = self.norm1(h_V + self.dropout1(dh))
|
636 |
+
|
637 |
+
dh = self.dense(h_V)
|
638 |
+
h_V = self.norm2(h_V + self.dropout2(dh))
|
639 |
+
if mask_V is not None:
|
640 |
+
mask_V = mask_V.unsqueeze(-1)
|
641 |
+
h_V = mask_V * h_V
|
642 |
+
|
643 |
+
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
|
644 |
+
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
|
645 |
+
h_EV = torch.cat([h_V_expand, h_EV], -1)
|
646 |
+
h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV)))))
|
647 |
+
h_E = self.norm3(h_E + self.dropout3(h_message))
|
648 |
+
return h_V, h_E
|
649 |
+
|
650 |
+
|
651 |
+
class DecLayer(nn.Module):
|
652 |
+
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
|
653 |
+
super(DecLayer, self).__init__()
|
654 |
+
self.num_hidden = num_hidden
|
655 |
+
self.num_in = num_in
|
656 |
+
self.scale = scale
|
657 |
+
self.dropout1 = nn.Dropout(dropout)
|
658 |
+
self.dropout2 = nn.Dropout(dropout)
|
659 |
+
self.norm1 = nn.LayerNorm(num_hidden)
|
660 |
+
self.norm2 = nn.LayerNorm(num_hidden)
|
661 |
+
|
662 |
+
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
|
663 |
+
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
|
664 |
+
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
|
665 |
+
self.act = torch.nn.GELU()
|
666 |
+
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
|
667 |
+
|
668 |
+
def forward(self, h_V, h_E, mask_V=None, mask_attend=None):
|
669 |
+
""" Parallel computation of full transformer layer """
|
670 |
+
|
671 |
+
# Concatenate h_V_i to h_E_ij
|
672 |
+
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1)
|
673 |
+
h_EV = torch.cat([h_V_expand, h_E], -1)
|
674 |
+
|
675 |
+
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
|
676 |
+
if mask_attend is not None:
|
677 |
+
h_message = mask_attend.unsqueeze(-1) * h_message
|
678 |
+
dh = torch.sum(h_message, -2) / self.scale
|
679 |
+
|
680 |
+
h_V = self.norm1(h_V + self.dropout1(dh))
|
681 |
+
|
682 |
+
# Position-wise feedforward
|
683 |
+
dh = self.dense(h_V)
|
684 |
+
h_V = self.norm2(h_V + self.dropout2(dh))
|
685 |
+
|
686 |
+
if mask_V is not None:
|
687 |
+
mask_V = mask_V.unsqueeze(-1)
|
688 |
+
h_V = mask_V * h_V
|
689 |
+
return h_V
|
690 |
+
|
691 |
+
|
692 |
+
|
693 |
+
class PositionWiseFeedForward(nn.Module):
|
694 |
+
def __init__(self, num_hidden, num_ff):
|
695 |
+
super(PositionWiseFeedForward, self).__init__()
|
696 |
+
self.W_in = nn.Linear(num_hidden, num_ff, bias=True)
|
697 |
+
self.W_out = nn.Linear(num_ff, num_hidden, bias=True)
|
698 |
+
self.act = torch.nn.GELU()
|
699 |
+
def forward(self, h_V):
|
700 |
+
h = self.act(self.W_in(h_V))
|
701 |
+
h = self.W_out(h)
|
702 |
+
return h
|
703 |
+
|
704 |
+
class PositionalEncodings(nn.Module):
|
705 |
+
def __init__(self, num_embeddings, max_relative_feature=32):
|
706 |
+
super(PositionalEncodings, self).__init__()
|
707 |
+
self.num_embeddings = num_embeddings
|
708 |
+
self.max_relative_feature = max_relative_feature
|
709 |
+
self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings)
|
710 |
+
|
711 |
+
def forward(self, offset, mask):
|
712 |
+
d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1)
|
713 |
+
d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1)
|
714 |
+
E = self.linear(d_onehot.float())
|
715 |
+
return E
|
716 |
+
|
717 |
+
|
718 |
+
|
719 |
+
class CA_ProteinFeatures(nn.Module):
|
720 |
+
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
|
721 |
+
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
|
722 |
+
""" Extract protein features """
|
723 |
+
super(CA_ProteinFeatures, self).__init__()
|
724 |
+
self.edge_features = edge_features
|
725 |
+
self.node_features = node_features
|
726 |
+
self.top_k = top_k
|
727 |
+
self.augment_eps = augment_eps
|
728 |
+
self.num_rbf = num_rbf
|
729 |
+
self.num_positional_embeddings = num_positional_embeddings
|
730 |
+
|
731 |
+
# Positional encoding
|
732 |
+
self.embeddings = PositionalEncodings(num_positional_embeddings)
|
733 |
+
# Normalization and embedding
|
734 |
+
node_in, edge_in = 3, num_positional_embeddings + num_rbf*9 + 7
|
735 |
+
self.node_embedding = nn.Linear(node_in, node_features, bias=False) #NOT USED
|
736 |
+
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
|
737 |
+
self.norm_nodes = nn.LayerNorm(node_features)
|
738 |
+
self.norm_edges = nn.LayerNorm(edge_features)
|
739 |
+
|
740 |
+
|
741 |
+
def _quaternions(self, R):
|
742 |
+
""" Convert a batch of 3D rotations [R] to quaternions [Q]
|
743 |
+
R [...,3,3]
|
744 |
+
Q [...,4]
|
745 |
+
"""
|
746 |
+
# Simple Wikipedia version
|
747 |
+
# en.wikipedia.org/wiki/Rotation_matrix#Quaternion
|
748 |
+
# For other options see math.stackexchange.com/questions/2074316/calculating-rotation-axis-from-rotation-matrix
|
749 |
+
diag = torch.diagonal(R, dim1=-2, dim2=-1)
|
750 |
+
Rxx, Ryy, Rzz = diag.unbind(-1)
|
751 |
+
magnitudes = 0.5 * torch.sqrt(torch.abs(1 + torch.stack([
|
752 |
+
Rxx - Ryy - Rzz,
|
753 |
+
- Rxx + Ryy - Rzz,
|
754 |
+
- Rxx - Ryy + Rzz
|
755 |
+
], -1)))
|
756 |
+
_R = lambda i,j: R[:,:,:,i,j]
|
757 |
+
signs = torch.sign(torch.stack([
|
758 |
+
_R(2,1) - _R(1,2),
|
759 |
+
_R(0,2) - _R(2,0),
|
760 |
+
_R(1,0) - _R(0,1)
|
761 |
+
], -1))
|
762 |
+
xyz = signs * magnitudes
|
763 |
+
# The relu enforces a non-negative trace
|
764 |
+
w = torch.sqrt(F.relu(1 + diag.sum(-1, keepdim=True))) / 2.
|
765 |
+
Q = torch.cat((xyz, w), -1)
|
766 |
+
Q = F.normalize(Q, dim=-1)
|
767 |
+
return Q
|
768 |
+
|
769 |
+
def _orientations_coarse(self, X, E_idx, eps=1e-6):
|
770 |
+
dX = X[:,1:,:] - X[:,:-1,:]
|
771 |
+
dX_norm = torch.norm(dX,dim=-1)
|
772 |
+
dX_mask = (3.6<dX_norm) & (dX_norm<4.0) #exclude CA-CA jumps
|
773 |
+
dX = dX*dX_mask[:,:,None]
|
774 |
+
U = F.normalize(dX, dim=-1)
|
775 |
+
u_2 = U[:,:-2,:]
|
776 |
+
u_1 = U[:,1:-1,:]
|
777 |
+
u_0 = U[:,2:,:]
|
778 |
+
# Backbone normals
|
779 |
+
n_2 = F.normalize(torch.cross(u_2, u_1), dim=-1)
|
780 |
+
n_1 = F.normalize(torch.cross(u_1, u_0), dim=-1)
|
781 |
+
|
782 |
+
# Bond angle calculation
|
783 |
+
cosA = -(u_1 * u_0).sum(-1)
|
784 |
+
cosA = torch.clamp(cosA, -1+eps, 1-eps)
|
785 |
+
A = torch.acos(cosA)
|
786 |
+
# Angle between normals
|
787 |
+
cosD = (n_2 * n_1).sum(-1)
|
788 |
+
cosD = torch.clamp(cosD, -1+eps, 1-eps)
|
789 |
+
D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
|
790 |
+
# Backbone features
|
791 |
+
AD_features = torch.stack((torch.cos(A), torch.sin(A) * torch.cos(D), torch.sin(A) * torch.sin(D)), 2)
|
792 |
+
AD_features = F.pad(AD_features, (0,0,1,2), 'constant', 0)
|
793 |
+
|
794 |
+
# Build relative orientations
|
795 |
+
o_1 = F.normalize(u_2 - u_1, dim=-1)
|
796 |
+
O = torch.stack((o_1, n_2, torch.cross(o_1, n_2)), 2)
|
797 |
+
O = O.view(list(O.shape[:2]) + [9])
|
798 |
+
O = F.pad(O, (0,0,1,2), 'constant', 0)
|
799 |
+
O_neighbors = gather_nodes(O, E_idx)
|
800 |
+
X_neighbors = gather_nodes(X, E_idx)
|
801 |
+
|
802 |
+
# Re-view as rotation matrices
|
803 |
+
O = O.view(list(O.shape[:2]) + [3,3])
|
804 |
+
O_neighbors = O_neighbors.view(list(O_neighbors.shape[:3]) + [3,3])
|
805 |
+
|
806 |
+
# Rotate into local reference frames
|
807 |
+
dX = X_neighbors - X.unsqueeze(-2)
|
808 |
+
dU = torch.matmul(O.unsqueeze(2), dX.unsqueeze(-1)).squeeze(-1)
|
809 |
+
dU = F.normalize(dU, dim=-1)
|
810 |
+
R = torch.matmul(O.unsqueeze(2).transpose(-1,-2), O_neighbors)
|
811 |
+
Q = self._quaternions(R)
|
812 |
+
|
813 |
+
# Orientation features
|
814 |
+
O_features = torch.cat((dU,Q), dim=-1)
|
815 |
+
return AD_features, O_features
|
816 |
+
|
817 |
+
|
818 |
+
|
819 |
+
def _dist(self, X, mask, eps=1E-6):
|
820 |
+
""" Pairwise euclidean distances """
|
821 |
+
# Convolutional network on NCHW
|
822 |
+
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
|
823 |
+
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
|
824 |
+
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
|
825 |
+
|
826 |
+
# Identify k nearest neighbors (including self)
|
827 |
+
D_max, _ = torch.max(D, -1, keepdim=True)
|
828 |
+
D_adjust = D + (1. - mask_2D) * D_max
|
829 |
+
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
|
830 |
+
mask_neighbors = gather_edges(mask_2D.unsqueeze(-1), E_idx)
|
831 |
+
return D_neighbors, E_idx, mask_neighbors
|
832 |
+
|
833 |
+
def _rbf(self, D):
|
834 |
+
# Distance radial basis function
|
835 |
+
device = D.device
|
836 |
+
D_min, D_max, D_count = 2., 22., self.num_rbf
|
837 |
+
D_mu = torch.linspace(D_min, D_max, D_count).to(device)
|
838 |
+
D_mu = D_mu.view([1,1,1,-1])
|
839 |
+
D_sigma = (D_max - D_min) / D_count
|
840 |
+
D_expand = torch.unsqueeze(D, -1)
|
841 |
+
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
|
842 |
+
return RBF
|
843 |
+
|
844 |
+
def _get_rbf(self, A, B, E_idx):
|
845 |
+
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
|
846 |
+
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
|
847 |
+
RBF_A_B = self._rbf(D_A_B_neighbors)
|
848 |
+
return RBF_A_B
|
849 |
+
|
850 |
+
def forward(self, Ca, mask, residue_idx, chain_labels):
|
851 |
+
""" Featurize coordinates as an attributed graph """
|
852 |
+
if self.augment_eps > 0:
|
853 |
+
Ca = Ca + self.augment_eps * torch.randn_like(Ca)
|
854 |
+
|
855 |
+
D_neighbors, E_idx, mask_neighbors = self._dist(Ca, mask)
|
856 |
+
|
857 |
+
Ca_0 = torch.zeros(Ca.shape, device=Ca.device)
|
858 |
+
Ca_2 = torch.zeros(Ca.shape, device=Ca.device)
|
859 |
+
Ca_0[:,1:,:] = Ca[:,:-1,:]
|
860 |
+
Ca_1 = Ca
|
861 |
+
Ca_2[:,:-1,:] = Ca[:,1:,:]
|
862 |
+
|
863 |
+
V, O_features = self._orientations_coarse(Ca, E_idx)
|
864 |
+
|
865 |
+
RBF_all = []
|
866 |
+
RBF_all.append(self._rbf(D_neighbors)) #Ca_1-Ca_1
|
867 |
+
RBF_all.append(self._get_rbf(Ca_0, Ca_0, E_idx))
|
868 |
+
RBF_all.append(self._get_rbf(Ca_2, Ca_2, E_idx))
|
869 |
+
|
870 |
+
RBF_all.append(self._get_rbf(Ca_0, Ca_1, E_idx))
|
871 |
+
RBF_all.append(self._get_rbf(Ca_0, Ca_2, E_idx))
|
872 |
+
|
873 |
+
RBF_all.append(self._get_rbf(Ca_1, Ca_0, E_idx))
|
874 |
+
RBF_all.append(self._get_rbf(Ca_1, Ca_2, E_idx))
|
875 |
+
|
876 |
+
RBF_all.append(self._get_rbf(Ca_2, Ca_0, E_idx))
|
877 |
+
RBF_all.append(self._get_rbf(Ca_2, Ca_1, E_idx))
|
878 |
+
|
879 |
+
|
880 |
+
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
|
881 |
+
|
882 |
+
|
883 |
+
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
|
884 |
+
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
|
885 |
+
|
886 |
+
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long()
|
887 |
+
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
|
888 |
+
E_positional = self.embeddings(offset.long(), E_chains)
|
889 |
+
E = torch.cat((E_positional, RBF_all, O_features), -1)
|
890 |
+
|
891 |
+
|
892 |
+
E = self.edge_embedding(E)
|
893 |
+
E = self.norm_edges(E)
|
894 |
+
|
895 |
+
return E, E_idx
|
896 |
+
|
897 |
+
|
898 |
+
|
899 |
+
|
900 |
+
class ProteinFeatures(nn.Module):
|
901 |
+
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
|
902 |
+
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
|
903 |
+
""" Extract protein features """
|
904 |
+
super(ProteinFeatures, self).__init__()
|
905 |
+
self.edge_features = edge_features
|
906 |
+
self.node_features = node_features
|
907 |
+
self.top_k = top_k
|
908 |
+
self.augment_eps = augment_eps
|
909 |
+
self.num_rbf = num_rbf
|
910 |
+
self.num_positional_embeddings = num_positional_embeddings
|
911 |
+
|
912 |
+
self.embeddings = PositionalEncodings(num_positional_embeddings)
|
913 |
+
node_in, edge_in = 6, num_positional_embeddings + num_rbf*25
|
914 |
+
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
|
915 |
+
self.norm_edges = nn.LayerNorm(edge_features)
|
916 |
+
|
917 |
+
def _dist(self, X, mask, eps=1E-6):
|
918 |
+
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
|
919 |
+
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
|
920 |
+
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
|
921 |
+
D_max, _ = torch.max(D, -1, keepdim=True)
|
922 |
+
D_adjust = D + (1. - mask_2D) * D_max
|
923 |
+
sampled_top_k = self.top_k
|
924 |
+
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
|
925 |
+
return D_neighbors, E_idx
|
926 |
+
|
927 |
+
def _rbf(self, D):
|
928 |
+
device = D.device
|
929 |
+
D_min, D_max, D_count = 2., 22., self.num_rbf
|
930 |
+
D_mu = torch.linspace(D_min, D_max, D_count, device=device)
|
931 |
+
D_mu = D_mu.view([1,1,1,-1])
|
932 |
+
D_sigma = (D_max - D_min) / D_count
|
933 |
+
D_expand = torch.unsqueeze(D, -1)
|
934 |
+
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
|
935 |
+
return RBF
|
936 |
+
|
937 |
+
def _get_rbf(self, A, B, E_idx):
|
938 |
+
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
|
939 |
+
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
|
940 |
+
RBF_A_B = self._rbf(D_A_B_neighbors)
|
941 |
+
return RBF_A_B
|
942 |
+
|
943 |
+
def forward(self, X, mask, residue_idx, chain_labels):
|
944 |
+
if self.augment_eps > 0:
|
945 |
+
X = X + self.augment_eps * torch.randn_like(X)
|
946 |
+
|
947 |
+
b = X[:,:,1,:] - X[:,:,0,:]
|
948 |
+
c = X[:,:,2,:] - X[:,:,1,:]
|
949 |
+
a = torch.cross(b, c, dim=-1)
|
950 |
+
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:]
|
951 |
+
Ca = X[:,:,1,:]
|
952 |
+
N = X[:,:,0,:]
|
953 |
+
C = X[:,:,2,:]
|
954 |
+
O = X[:,:,3,:]
|
955 |
+
|
956 |
+
D_neighbors, E_idx = self._dist(Ca, mask)
|
957 |
+
|
958 |
+
RBF_all = []
|
959 |
+
RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca
|
960 |
+
RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N
|
961 |
+
RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C
|
962 |
+
RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O
|
963 |
+
RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb
|
964 |
+
RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N
|
965 |
+
RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C
|
966 |
+
RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O
|
967 |
+
RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb
|
968 |
+
RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C
|
969 |
+
RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O
|
970 |
+
RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb
|
971 |
+
RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C
|
972 |
+
RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O
|
973 |
+
RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C
|
974 |
+
RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca
|
975 |
+
RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca
|
976 |
+
RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca
|
977 |
+
RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca
|
978 |
+
RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N
|
979 |
+
RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N
|
980 |
+
RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N
|
981 |
+
RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb
|
982 |
+
RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb
|
983 |
+
RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O
|
984 |
+
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
|
985 |
+
|
986 |
+
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
|
987 |
+
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
|
988 |
+
|
989 |
+
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction
|
990 |
+
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
|
991 |
+
E_positional = self.embeddings(offset.long(), E_chains)
|
992 |
+
E = torch.cat((E_positional, RBF_all), -1)
|
993 |
+
E = self.edge_embedding(E)
|
994 |
+
E = self.norm_edges(E)
|
995 |
+
return E, E_idx
|
996 |
+
|
997 |
+
|
998 |
+
|
999 |
+
class ProteinMPNN(nn.Module):
|
1000 |
+
def __init__(self, num_letters, node_features, edge_features,
|
1001 |
+
hidden_dim, num_encoder_layers=3, num_decoder_layers=3,
|
1002 |
+
vocab=21, k_neighbors=64, augment_eps=0.05, dropout=0.1, ca_only=False):
|
1003 |
+
super(ProteinMPNN, self).__init__()
|
1004 |
+
|
1005 |
+
# Hyperparameters
|
1006 |
+
self.node_features = node_features
|
1007 |
+
self.edge_features = edge_features
|
1008 |
+
self.hidden_dim = hidden_dim
|
1009 |
+
|
1010 |
+
# Featurization layers
|
1011 |
+
if ca_only:
|
1012 |
+
self.features = CA_ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
|
1013 |
+
self.W_v = nn.Linear(node_features, hidden_dim, bias=True)
|
1014 |
+
else:
|
1015 |
+
self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
|
1016 |
+
|
1017 |
+
self.W_e = nn.Linear(edge_features, hidden_dim, bias=True)
|
1018 |
+
self.W_s = nn.Embedding(vocab, hidden_dim)
|
1019 |
+
|
1020 |
+
# Encoder layers
|
1021 |
+
self.encoder_layers = nn.ModuleList([
|
1022 |
+
EncLayer(hidden_dim, hidden_dim*2, dropout=dropout)
|
1023 |
+
for _ in range(num_encoder_layers)
|
1024 |
+
])
|
1025 |
+
|
1026 |
+
# Decoder layers
|
1027 |
+
self.decoder_layers = nn.ModuleList([
|
1028 |
+
DecLayer(hidden_dim, hidden_dim*3, dropout=dropout)
|
1029 |
+
for _ in range(num_decoder_layers)
|
1030 |
+
])
|
1031 |
+
self.W_out = nn.Linear(hidden_dim, num_letters, bias=True)
|
1032 |
+
|
1033 |
+
for p in self.parameters():
|
1034 |
+
if p.dim() > 1:
|
1035 |
+
nn.init.xavier_uniform_(p)
|
1036 |
+
|
1037 |
+
def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, use_input_decoding_order=False, decoding_order=None):
|
1038 |
+
""" Graph-conditioned sequence model """
|
1039 |
+
device=X.device
|
1040 |
+
# Prepare node and edge embeddings
|
1041 |
+
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
|
1042 |
+
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
|
1043 |
+
h_E = self.W_e(E)
|
1044 |
+
|
1045 |
+
# Encoder is unmasked self-attention
|
1046 |
+
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
|
1047 |
+
mask_attend = mask.unsqueeze(-1) * mask_attend
|
1048 |
+
for layer in self.encoder_layers:
|
1049 |
+
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
|
1050 |
+
|
1051 |
+
# Concatenate sequence embeddings for autoregressive decoder
|
1052 |
+
h_S = self.W_s(S)
|
1053 |
+
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
|
1054 |
+
|
1055 |
+
# Build encoder embeddings
|
1056 |
+
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
|
1057 |
+
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
|
1058 |
+
|
1059 |
+
|
1060 |
+
chain_M = chain_M*mask #update chain_M to include missing regions
|
1061 |
+
if not use_input_decoding_order:
|
1062 |
+
decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
|
1063 |
+
mask_size = E_idx.shape[1]
|
1064 |
+
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
|
1065 |
+
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
|
1066 |
+
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
|
1067 |
+
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
|
1068 |
+
mask_bw = mask_1D * mask_attend
|
1069 |
+
mask_fw = mask_1D * (1. - mask_attend)
|
1070 |
+
|
1071 |
+
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
|
1072 |
+
for layer in self.decoder_layers:
|
1073 |
+
# Masked positions attend to encoder information, unmasked see.
|
1074 |
+
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
|
1075 |
+
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
|
1076 |
+
h_V = layer(h_V, h_ESV, mask)
|
1077 |
+
|
1078 |
+
logits = self.W_out(h_V)
|
1079 |
+
log_probs = F.log_softmax(logits, dim=-1)
|
1080 |
+
return log_probs
|
1081 |
+
|
1082 |
+
|
1083 |
+
|
1084 |
+
def sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, bias_by_res=None):
|
1085 |
+
device = X.device
|
1086 |
+
# Prepare node and edge embeddings
|
1087 |
+
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
|
1088 |
+
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
|
1089 |
+
h_E = self.W_e(E)
|
1090 |
+
|
1091 |
+
# Encoder is unmasked self-attention
|
1092 |
+
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
|
1093 |
+
mask_attend = mask.unsqueeze(-1) * mask_attend
|
1094 |
+
for layer in self.encoder_layers:
|
1095 |
+
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
|
1096 |
+
|
1097 |
+
# Decoder uses masked self-attention
|
1098 |
+
chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
|
1099 |
+
decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
|
1100 |
+
mask_size = E_idx.shape[1]
|
1101 |
+
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
|
1102 |
+
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
|
1103 |
+
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
|
1104 |
+
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
|
1105 |
+
mask_bw = mask_1D * mask_attend
|
1106 |
+
mask_fw = mask_1D * (1. - mask_attend)
|
1107 |
+
|
1108 |
+
N_batch, N_nodes = X.size(0), X.size(1)
|
1109 |
+
log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
|
1110 |
+
all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
|
1111 |
+
h_S = torch.zeros_like(h_V, device=device)
|
1112 |
+
S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
|
1113 |
+
h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
|
1114 |
+
constant = torch.tensor(omit_AAs_np, device=device)
|
1115 |
+
constant_bias = torch.tensor(bias_AAs_np, device=device)
|
1116 |
+
#chain_mask_combined = chain_mask*chain_M_pos
|
1117 |
+
omit_AA_mask_flag = omit_AA_mask != None
|
1118 |
+
|
1119 |
+
|
1120 |
+
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
|
1121 |
+
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
|
1122 |
+
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
|
1123 |
+
for t_ in range(N_nodes):
|
1124 |
+
t = decoding_order[:,t_] #[B]
|
1125 |
+
chain_mask_gathered = torch.gather(chain_mask, 1, t[:,None]) #[B]
|
1126 |
+
mask_gathered = torch.gather(mask, 1, t[:,None]) #[B]
|
1127 |
+
bias_by_res_gathered = torch.gather(bias_by_res, 1, t[:,None,None].repeat(1,1,21))[:,0,:] #[B, 21]
|
1128 |
+
if (mask_gathered==0).all(): #for padded or missing regions only
|
1129 |
+
S_t = torch.gather(S_true, 1, t[:,None])
|
1130 |
+
else:
|
1131 |
+
# Hidden layers
|
1132 |
+
E_idx_t = torch.gather(E_idx, 1, t[:,None,None].repeat(1,1,E_idx.shape[-1]))
|
1133 |
+
h_E_t = torch.gather(h_E, 1, t[:,None,None,None].repeat(1,1,h_E.shape[-2], h_E.shape[-1]))
|
1134 |
+
h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
|
1135 |
+
h_EXV_encoder_t = torch.gather(h_EXV_encoder_fw, 1, t[:,None,None,None].repeat(1,1,h_EXV_encoder_fw.shape[-2], h_EXV_encoder_fw.shape[-1]))
|
1136 |
+
mask_t = torch.gather(mask, 1, t[:,None])
|
1137 |
+
for l, layer in enumerate(self.decoder_layers):
|
1138 |
+
# Updated relational features for future states
|
1139 |
+
h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
|
1140 |
+
h_V_t = torch.gather(h_V_stack[l], 1, t[:,None,None].repeat(1,1,h_V_stack[l].shape[-1]))
|
1141 |
+
h_ESV_t = torch.gather(mask_bw, 1, t[:,None,None,None].repeat(1,1,mask_bw.shape[-2], mask_bw.shape[-1])) * h_ESV_decoder_t + h_EXV_encoder_t
|
1142 |
+
h_V_stack[l+1].scatter_(1, t[:,None,None].repeat(1,1,h_V.shape[-1]), layer(h_V_t, h_ESV_t, mask_V=mask_t))
|
1143 |
+
# Sampling step
|
1144 |
+
h_V_t = torch.gather(h_V_stack[-1], 1, t[:,None,None].repeat(1,1,h_V_stack[-1].shape[-1]))[:,0]
|
1145 |
+
logits = self.W_out(h_V_t) / temperature
|
1146 |
+
probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
|
1147 |
+
if pssm_bias_flag:
|
1148 |
+
pssm_coef_gathered = torch.gather(pssm_coef, 1, t[:,None])[:,0]
|
1149 |
+
pssm_bias_gathered = torch.gather(pssm_bias, 1, t[:,None,None].repeat(1,1,pssm_bias.shape[-1]))[:,0]
|
1150 |
+
probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
|
1151 |
+
if pssm_log_odds_flag:
|
1152 |
+
pssm_log_odds_mask_gathered = torch.gather(pssm_log_odds_mask, 1, t[:,None, None].repeat(1,1,pssm_log_odds_mask.shape[-1]))[:,0] #[B, 21]
|
1153 |
+
probs_masked = probs*pssm_log_odds_mask_gathered
|
1154 |
+
probs_masked += probs * 0.001
|
1155 |
+
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
|
1156 |
+
if omit_AA_mask_flag:
|
1157 |
+
omit_AA_mask_gathered = torch.gather(omit_AA_mask, 1, t[:,None, None].repeat(1,1,omit_AA_mask.shape[-1]))[:,0] #[B, 21]
|
1158 |
+
probs_masked = probs*(1.0-omit_AA_mask_gathered)
|
1159 |
+
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
|
1160 |
+
S_t = torch.multinomial(probs, 1)
|
1161 |
+
all_probs.scatter_(1, t[:,None,None].repeat(1,1,21), (chain_mask_gathered[:,:,None,]*probs[:,None,:]).float())
|
1162 |
+
S_true_gathered = torch.gather(S_true, 1, t[:,None])
|
1163 |
+
S_t = (S_t*chain_mask_gathered+S_true_gathered*(1.0-chain_mask_gathered)).long()
|
1164 |
+
temp1 = self.W_s(S_t)
|
1165 |
+
h_S.scatter_(1, t[:,None,None].repeat(1,1,temp1.shape[-1]), temp1)
|
1166 |
+
S.scatter_(1, t[:,None], S_t)
|
1167 |
+
output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
|
1168 |
+
return output_dict
|
1169 |
+
|
1170 |
+
|
1171 |
+
def tied_sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, tied_pos=None, tied_beta=None, bias_by_res=None):
|
1172 |
+
device = X.device
|
1173 |
+
# Prepare node and edge embeddings
|
1174 |
+
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
|
1175 |
+
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
|
1176 |
+
h_E = self.W_e(E)
|
1177 |
+
# Encoder is unmasked self-attention
|
1178 |
+
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
|
1179 |
+
mask_attend = mask.unsqueeze(-1) * mask_attend
|
1180 |
+
for layer in self.encoder_layers:
|
1181 |
+
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
|
1182 |
+
|
1183 |
+
# Decoder uses masked self-attention
|
1184 |
+
chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
|
1185 |
+
decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
|
1186 |
+
|
1187 |
+
new_decoding_order = []
|
1188 |
+
for t_dec in list(decoding_order[0,].cpu().data.numpy()):
|
1189 |
+
if t_dec not in list(itertools.chain(*new_decoding_order)):
|
1190 |
+
list_a = [item for item in tied_pos if t_dec in item]
|
1191 |
+
if list_a:
|
1192 |
+
new_decoding_order.append(list_a[0])
|
1193 |
+
else:
|
1194 |
+
new_decoding_order.append([t_dec])
|
1195 |
+
decoding_order = torch.tensor(list(itertools.chain(*new_decoding_order)), device=device)[None,].repeat(X.shape[0],1)
|
1196 |
+
|
1197 |
+
mask_size = E_idx.shape[1]
|
1198 |
+
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
|
1199 |
+
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
|
1200 |
+
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
|
1201 |
+
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
|
1202 |
+
mask_bw = mask_1D * mask_attend
|
1203 |
+
mask_fw = mask_1D * (1. - mask_attend)
|
1204 |
+
|
1205 |
+
N_batch, N_nodes = X.size(0), X.size(1)
|
1206 |
+
log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
|
1207 |
+
all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
|
1208 |
+
h_S = torch.zeros_like(h_V, device=device)
|
1209 |
+
S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
|
1210 |
+
h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
|
1211 |
+
constant = torch.tensor(omit_AAs_np, device=device)
|
1212 |
+
constant_bias = torch.tensor(bias_AAs_np, device=device)
|
1213 |
+
omit_AA_mask_flag = omit_AA_mask != None
|
1214 |
+
|
1215 |
+
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
|
1216 |
+
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
|
1217 |
+
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
|
1218 |
+
for t_list in new_decoding_order:
|
1219 |
+
logits = 0.0
|
1220 |
+
logit_list = []
|
1221 |
+
done_flag = False
|
1222 |
+
for t in t_list:
|
1223 |
+
if (mask[:,t]==0).all():
|
1224 |
+
S_t = S_true[:,t]
|
1225 |
+
for t in t_list:
|
1226 |
+
h_S[:,t,:] = self.W_s(S_t)
|
1227 |
+
S[:,t] = S_t
|
1228 |
+
done_flag = True
|
1229 |
+
break
|
1230 |
+
else:
|
1231 |
+
E_idx_t = E_idx[:,t:t+1,:]
|
1232 |
+
h_E_t = h_E[:,t:t+1,:,:]
|
1233 |
+
h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
|
1234 |
+
h_EXV_encoder_t = h_EXV_encoder_fw[:,t:t+1,:,:]
|
1235 |
+
mask_t = mask[:,t:t+1]
|
1236 |
+
for l, layer in enumerate(self.decoder_layers):
|
1237 |
+
h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
|
1238 |
+
h_V_t = h_V_stack[l][:,t:t+1,:]
|
1239 |
+
h_ESV_t = mask_bw[:,t:t+1,:,:] * h_ESV_decoder_t + h_EXV_encoder_t
|
1240 |
+
h_V_stack[l+1][:,t,:] = layer(h_V_t, h_ESV_t, mask_V=mask_t).squeeze(1)
|
1241 |
+
h_V_t = h_V_stack[-1][:,t,:]
|
1242 |
+
logit_list.append((self.W_out(h_V_t) / temperature)/len(t_list))
|
1243 |
+
logits += tied_beta[t]*(self.W_out(h_V_t) / temperature)/len(t_list)
|
1244 |
+
if done_flag:
|
1245 |
+
pass
|
1246 |
+
else:
|
1247 |
+
bias_by_res_gathered = bias_by_res[:,t,:] #[B, 21]
|
1248 |
+
probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
|
1249 |
+
if pssm_bias_flag:
|
1250 |
+
pssm_coef_gathered = pssm_coef[:,t]
|
1251 |
+
pssm_bias_gathered = pssm_bias[:,t]
|
1252 |
+
probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
|
1253 |
+
if pssm_log_odds_flag:
|
1254 |
+
pssm_log_odds_mask_gathered = pssm_log_odds_mask[:,t]
|
1255 |
+
probs_masked = probs*pssm_log_odds_mask_gathered
|
1256 |
+
probs_masked += probs * 0.001
|
1257 |
+
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
|
1258 |
+
if omit_AA_mask_flag:
|
1259 |
+
omit_AA_mask_gathered = omit_AA_mask[:,t]
|
1260 |
+
probs_masked = probs*(1.0-omit_AA_mask_gathered)
|
1261 |
+
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
|
1262 |
+
S_t_repeat = torch.multinomial(probs, 1).squeeze(-1)
|
1263 |
+
S_t_repeat = (chain_mask[:,t]*S_t_repeat + (1-chain_mask[:,t])*S_true[:,t]).long() #hard pick fixed positions
|
1264 |
+
for t in t_list:
|
1265 |
+
h_S[:,t,:] = self.W_s(S_t_repeat)
|
1266 |
+
S[:,t] = S_t_repeat
|
1267 |
+
all_probs[:,t,:] = probs.float()
|
1268 |
+
output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
|
1269 |
+
return output_dict
|
1270 |
+
|
1271 |
+
|
1272 |
+
def conditional_probs(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, backbone_only=False):
|
1273 |
+
""" Graph-conditioned sequence model """
|
1274 |
+
device=X.device
|
1275 |
+
# Prepare node and edge embeddings
|
1276 |
+
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
|
1277 |
+
h_V_enc = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
|
1278 |
+
h_E = self.W_e(E)
|
1279 |
+
|
1280 |
+
# Encoder is unmasked self-attention
|
1281 |
+
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
|
1282 |
+
mask_attend = mask.unsqueeze(-1) * mask_attend
|
1283 |
+
for layer in self.encoder_layers:
|
1284 |
+
h_V_enc, h_E = layer(h_V_enc, h_E, E_idx, mask, mask_attend)
|
1285 |
+
|
1286 |
+
# Concatenate sequence embeddings for autoregressive decoder
|
1287 |
+
h_S = self.W_s(S)
|
1288 |
+
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
|
1289 |
+
|
1290 |
+
# Build encoder embeddings
|
1291 |
+
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
|
1292 |
+
h_EXV_encoder = cat_neighbors_nodes(h_V_enc, h_EX_encoder, E_idx)
|
1293 |
+
|
1294 |
+
|
1295 |
+
chain_M = chain_M*mask #update chain_M to include missing regions
|
1296 |
+
|
1297 |
+
chain_M_np = chain_M.cpu().numpy()
|
1298 |
+
idx_to_loop = np.argwhere(chain_M_np[0,:]==1)[:,0]
|
1299 |
+
log_conditional_probs = torch.zeros([X.shape[0], chain_M.shape[1], 21], device=device).float()
|
1300 |
+
|
1301 |
+
for idx in idx_to_loop:
|
1302 |
+
h_V = torch.clone(h_V_enc)
|
1303 |
+
order_mask = torch.zeros(chain_M.shape[1], device=device).float()
|
1304 |
+
if backbone_only:
|
1305 |
+
order_mask = torch.ones(chain_M.shape[1], device=device).float()
|
1306 |
+
order_mask[idx] = 0.
|
1307 |
+
else:
|
1308 |
+
order_mask = torch.zeros(chain_M.shape[1], device=device).float()
|
1309 |
+
order_mask[idx] = 1.
|
1310 |
+
decoding_order = torch.argsort((order_mask[None,]+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
|
1311 |
+
mask_size = E_idx.shape[1]
|
1312 |
+
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
|
1313 |
+
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
|
1314 |
+
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
|
1315 |
+
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
|
1316 |
+
mask_bw = mask_1D * mask_attend
|
1317 |
+
mask_fw = mask_1D * (1. - mask_attend)
|
1318 |
+
|
1319 |
+
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
|
1320 |
+
for layer in self.decoder_layers:
|
1321 |
+
# Masked positions attend to encoder information, unmasked see.
|
1322 |
+
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
|
1323 |
+
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
|
1324 |
+
h_V = layer(h_V, h_ESV, mask)
|
1325 |
+
|
1326 |
+
logits = self.W_out(h_V)
|
1327 |
+
log_probs = F.log_softmax(logits, dim=-1)
|
1328 |
+
log_conditional_probs[:,idx,:] = log_probs[:,idx,:]
|
1329 |
+
return log_conditional_probs
|
1330 |
+
|
1331 |
+
|
1332 |
+
def unconditional_probs(self, X, mask, residue_idx, chain_encoding_all):
|
1333 |
+
""" Graph-conditioned sequence model """
|
1334 |
+
device=X.device
|
1335 |
+
# Prepare node and edge embeddings
|
1336 |
+
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
|
1337 |
+
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
|
1338 |
+
h_E = self.W_e(E)
|
1339 |
+
|
1340 |
+
# Encoder is unmasked self-attention
|
1341 |
+
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
|
1342 |
+
mask_attend = mask.unsqueeze(-1) * mask_attend
|
1343 |
+
for layer in self.encoder_layers:
|
1344 |
+
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
|
1345 |
+
|
1346 |
+
# Build encoder embeddings
|
1347 |
+
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_V), h_E, E_idx)
|
1348 |
+
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
|
1349 |
+
|
1350 |
+
order_mask_backward = torch.zeros([X.shape[0], X.shape[1], X.shape[1]], device=device)
|
1351 |
+
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
|
1352 |
+
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
|
1353 |
+
mask_bw = mask_1D * mask_attend
|
1354 |
+
mask_fw = mask_1D * (1. - mask_attend)
|
1355 |
+
|
1356 |
+
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
|
1357 |
+
for layer in self.decoder_layers:
|
1358 |
+
h_V = layer(h_V, h_EXV_encoder_fw, mask)
|
1359 |
+
|
1360 |
+
logits = self.W_out(h_V)
|
1361 |
+
log_probs = F.log_softmax(logits, dim=-1)
|
1362 |
+
return log_probs
|
1363 |
+
|