Spaces:
Running
on
Zero
Running
on
Zero
bug fix
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🖼
|
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.29
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -17,28 +17,29 @@ from diffusers import (
|
|
17 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
|
18 |
from transformers import CLIPImageProcessor
|
19 |
from diffusers.utils import load_image
|
20 |
-
|
|
|
21 |
device = "cuda"
|
22 |
base_model_id = "SG161222/RealVisXL_V4.0"
|
23 |
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
|
24 |
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
|
25 |
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
pipe.
|
41 |
-
pipe.to(device)
|
42 |
|
43 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
44 |
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
@@ -79,7 +80,7 @@ def get_depth_map(image):
|
|
79 |
|
80 |
|
81 |
@spaces.GPU(enable_queue=True)
|
82 |
-
def process(orginal_image, image_url, prompt,
|
83 |
|
84 |
if image_url:
|
85 |
orginal_image = load_image(image_url)
|
@@ -117,7 +118,6 @@ with gr.Blocks() as demo:
|
|
117 |
control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
|
118 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
119 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
120 |
-
a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
|
121 |
n_prompt = gr.Textbox(
|
122 |
label="Negative prompt",
|
123 |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
@@ -130,7 +130,6 @@ with gr.Blocks() as demo:
|
|
130 |
image,
|
131 |
image_url,
|
132 |
prompt,
|
133 |
-
a_prompt,
|
134 |
n_prompt,
|
135 |
num_steps,
|
136 |
guidance_scale,
|
@@ -149,6 +148,5 @@ with gr.Blocks() as demo:
|
|
149 |
outputs=[result, logs],
|
150 |
api_name=False
|
151 |
)
|
152 |
-
return demo
|
153 |
|
154 |
demo.queue().launch()
|
|
|
17 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
|
18 |
from transformers import CLIPImageProcessor
|
19 |
from diffusers.utils import load_image
|
20 |
+
from gradio_imageslider import ImageSlider
|
21 |
+
|
22 |
device = "cuda"
|
23 |
base_model_id = "SG161222/RealVisXL_V4.0"
|
24 |
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
|
25 |
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
|
26 |
|
27 |
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
|
30 |
+
# load pipe
|
31 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, variant="fp16", use_safetensors=True, torch_dtype=torch.float16)
|
32 |
+
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.float16)
|
33 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
34 |
+
base_model_id,
|
35 |
+
controlnet=controlnet,
|
36 |
+
vae=vae,
|
37 |
+
variant="fp16",
|
38 |
+
use_safetensors=True,
|
39 |
+
torch_dtype=torch.float16,
|
40 |
+
)
|
41 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
42 |
+
pipe.to(device)
|
43 |
|
44 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
45 |
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
|
|
80 |
|
81 |
|
82 |
@spaces.GPU(enable_queue=True)
|
83 |
+
def process(orginal_image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed):
|
84 |
|
85 |
if image_url:
|
86 |
orginal_image = load_image(image_url)
|
|
|
118 |
control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
|
119 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
120 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
121 |
n_prompt = gr.Textbox(
|
122 |
label="Negative prompt",
|
123 |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
|
|
130 |
image,
|
131 |
image_url,
|
132 |
prompt,
|
|
|
133 |
n_prompt,
|
134 |
num_steps,
|
135 |
guidance_scale,
|
|
|
148 |
outputs=[result, logs],
|
149 |
api_name=False
|
150 |
)
|
|
|
151 |
|
152 |
demo.queue().launch()
|