working plots
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +159 -219
- data.csv +65 -0
- plt.png +0 -0
__pycache__/app.cpython-310.pyc
ADDED
Binary file (6.36 kB). View file
|
|
app.py
CHANGED
@@ -2,280 +2,220 @@ import matplotlib
|
|
2 |
matplotlib.use('Agg')
|
3 |
|
4 |
import functools
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import matplotlib.pyplot as plt
|
8 |
import seaborn as sns
|
9 |
import pandas as pd
|
10 |
|
11 |
|
12 |
-
# benchmark order: pytorch, tf eager, tf xla; units = ms
|
13 |
-
BENCHMARK_DATA = {
|
14 |
-
"Greedy Decoding": {
|
15 |
-
"DistilGPT2": {
|
16 |
-
"T4": [336.22, 3976.23, 115.84],
|
17 |
-
"3090": [158.38, 1835.82, 46.56],
|
18 |
-
"A100": [371.49, 4073.84, 60.94],
|
19 |
-
},
|
20 |
-
"GPT2": {
|
21 |
-
"T4": [607.31, 7140.23, 185.12],
|
22 |
-
"3090": [297.03, 3308.31, 76.68],
|
23 |
-
"A100": [691.75, 7323.60, 110.72],
|
24 |
-
},
|
25 |
-
"OPT-1.3B": {
|
26 |
-
"T4": [1303.41, 15939.07, 1488.15],
|
27 |
-
"3090": [428.33, 7259.43, 468.37],
|
28 |
-
"A100": [1125.00, 16713.63, 384.52],
|
29 |
-
},
|
30 |
-
"GPTJ-6B": {
|
31 |
-
"T4": [0, 0, 0],
|
32 |
-
"3090": [0, 0, 0],
|
33 |
-
"A100": [2664.28, 32783.09, 1440.06],
|
34 |
-
},
|
35 |
-
"T5 Small": {
|
36 |
-
"T4": [99.88, 1527.73, 18.78],
|
37 |
-
"3090": [55.09, 665.70, 9.25],
|
38 |
-
"A100": [124.91, 1642.07, 13.72],
|
39 |
-
},
|
40 |
-
"T5 Base": {
|
41 |
-
"T4": [416.56, 6095.05, 106.12],
|
42 |
-
"3090": [223.00, 2503.28, 46.67],
|
43 |
-
"A100": [550.76, 6504.11, 64.57],
|
44 |
-
},
|
45 |
-
"T5 Large": {
|
46 |
-
"T4": [645.05, 9587.67, 225.17],
|
47 |
-
"3090": [377.74, 4216.41, 97.92],
|
48 |
-
"A100": [944.17, 10572.43, 116.52],
|
49 |
-
},
|
50 |
-
"T5 3B": {
|
51 |
-
"T4": [1493.61, 13629.80, 1494.80],
|
52 |
-
"3090": [694.75, 6316.79, 489.33],
|
53 |
-
"A100": [1801.68, 16707.71, 411.93],
|
54 |
-
},
|
55 |
-
},
|
56 |
-
"Sampling": {
|
57 |
-
"DistilGPT2": {
|
58 |
-
"T4": [617.40, 6078.81, 221.65],
|
59 |
-
"3090": [310.37, 2843.73, 85.44],
|
60 |
-
"A100": [729.05, 7140.05, 121.83],
|
61 |
-
},
|
62 |
-
"GPT2": {
|
63 |
-
"T4": [1205.34, 12256.98, 378.69],
|
64 |
-
"3090": [577.12, 5637.11, 160.02],
|
65 |
-
"A100": [1377.68, 15605.72, 234.47],
|
66 |
-
},
|
67 |
-
"OPT-1.3B": {
|
68 |
-
"T4": [2166.72, 19126.25, 2341.32],
|
69 |
-
"3090": [706.50, 9616.97, 731.58],
|
70 |
-
"A100": [2019.70, 28621.09, 690.36],
|
71 |
-
},
|
72 |
-
"GPTJ-6B": {
|
73 |
-
"T4": [0, 0, 0],
|
74 |
-
"3090": [0, 0, 0],
|
75 |
-
"A100": [5150.35, 70554.07, 2744.49],
|
76 |
-
},
|
77 |
-
"T5 Small": {
|
78 |
-
"T4": [235.93, 3599.47, 41.07],
|
79 |
-
"3090": [100.41, 1093.33, 23.24],
|
80 |
-
"A100": [267.42, 3366.73, 28.53],
|
81 |
-
},
|
82 |
-
"T5 Base": {
|
83 |
-
"T4": [812.59, 7966.73, 196.85],
|
84 |
-
"3090": [407.81, 4904.54, 97.56],
|
85 |
-
"A100": [1033.05, 11521.97, 123.93],
|
86 |
-
},
|
87 |
-
"T5 Large": {
|
88 |
-
"T4": [1114.22, 16433.31, 424.91],
|
89 |
-
"3090": [647.61, 7184.71, 160.97],
|
90 |
-
"A100": [1668.73, 19962.78, 200.75],
|
91 |
-
},
|
92 |
-
"T5 3B": {
|
93 |
-
"T4": [2282.56, 20891.22, 2196.02],
|
94 |
-
"3090": [1011.32, 9735.97, 734.40],
|
95 |
-
"A100": [2769.64, 26440.65, 612.98],
|
96 |
-
},
|
97 |
-
},
|
98 |
-
"Beam Search": {
|
99 |
-
"DistilGPT2": {
|
100 |
-
"T4": [2407.89, 19442.60, 3313.92],
|
101 |
-
"3090": [998.52, 8286.03, 900.28],
|
102 |
-
"A100": [2237.41, 21771.40, 760.47],
|
103 |
-
},
|
104 |
-
"GPT2": {
|
105 |
-
"T4": [3767.43, 34813.93, 5559.42],
|
106 |
-
"3090": [1633.04, 14606.93, 1533.55],
|
107 |
-
"A100": [3705.43, 34586.23, 1295.87],
|
108 |
-
},
|
109 |
-
"OPT-1.3B": {
|
110 |
-
"T4": [16649.82, 78500.33, 21894.31],
|
111 |
-
"3090": [508518, 32822.81, 5762.46],
|
112 |
-
"A100": [5967.32, 78334.56, 4096.38],
|
113 |
-
},
|
114 |
-
"GPTJ-6B": {
|
115 |
-
"T4": [0, 0, 0],
|
116 |
-
"3090": [0, 0, 0],
|
117 |
-
"A100": [15119.10, 134000.40, 10214.17],
|
118 |
-
},
|
119 |
-
"T5 Small": {
|
120 |
-
"T4": [283.64, 25089.12, 1391.66],
|
121 |
-
"3090": [137.38, 10680.28, 486.96],
|
122 |
-
"A100": [329.28, 24747.38, 513.99],
|
123 |
-
},
|
124 |
-
"T5 Base": {
|
125 |
-
"T4": [1383.21, 44809.14, 3920.40],
|
126 |
-
"3090": [723.11, 18657.48, 1258.60],
|
127 |
-
"A100": [2360.85, 45085.07, 1107.58],
|
128 |
-
},
|
129 |
-
"T5 Large": {
|
130 |
-
"T4": [1663.50, 81902.41, 9551.29],
|
131 |
-
"3090": [922.53, 35524.30, 2838.86],
|
132 |
-
"A100": [2168.22, 86890.00, 2373.04],
|
133 |
-
},
|
134 |
-
"T5 3B": {
|
135 |
-
"T4": [0, 0, 0],
|
136 |
-
"3090": [1521.05, 35337.30, 8282.09],
|
137 |
-
"A100": [3162.54, 88453.65, 5585.20],
|
138 |
-
},
|
139 |
-
},
|
140 |
-
}
|
141 |
FIGURE_PATH = "plt.png"
|
142 |
FIG_DPI = 300
|
143 |
|
144 |
|
145 |
-
def get_plot(
|
146 |
-
|
147 |
-
df
|
148 |
-
df =
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
g = sns.catplot(
|
153 |
data=df,
|
154 |
kind="bar",
|
155 |
-
x="
|
156 |
-
y="
|
157 |
-
hue="
|
158 |
-
palette={"
|
159 |
alpha=.9,
|
160 |
)
|
161 |
g.despine(left=True)
|
162 |
-
g.set_axis_labels("
|
163 |
-
g.
|
|
|
|
|
|
|
164 |
|
165 |
# Add the number to the top of each bar
|
166 |
ax = g.facet_axis(0, 0)
|
167 |
for i in ax.containers:
|
168 |
-
ax.bar_label(i,)
|
169 |
|
170 |
plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
|
171 |
return FIGURE_PATH
|
172 |
|
|
|
173 |
demo = gr.Blocks()
|
174 |
|
175 |
with demo:
|
176 |
gr.Markdown(
|
177 |
"""
|
178 |
-
#
|
179 |
-
Instructions:
|
180 |
-
1. Pick a tab for the type of generation (or for benchmark information);
|
181 |
-
2. Select a model from the dropdown menu;
|
182 |
-
3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
|
183 |
-
PyTorch to TensorFlow with XLA.
|
184 |
"""
|
185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
with gr.Tabs():
|
187 |
-
with gr.TabItem("
|
188 |
-
plot_fn = functools.partial(get_plot,
|
189 |
with gr.Row():
|
190 |
-
with gr.Column():
|
191 |
-
|
192 |
-
|
193 |
-
value="T5 Small",
|
194 |
-
label="Model",
|
195 |
-
interactive=True,
|
196 |
-
)
|
197 |
-
eager_enabler = gr.Radio(
|
198 |
-
["Yes", "No"],
|
199 |
-
value="Yes",
|
200 |
-
label="Plot TF Eager Execution?",
|
201 |
-
interactive=True
|
202 |
-
)
|
203 |
gr.Markdown(
|
204 |
"""
|
205 |
-
###
|
206 |
-
- `
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
"""
|
209 |
)
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
plot_fn =
|
|
|
|
|
|
|
215 |
with gr.Row():
|
216 |
-
with gr.Column():
|
217 |
-
|
218 |
-
|
219 |
-
value="T5 Small",
|
220 |
-
label="Model",
|
221 |
-
interactive=True,
|
222 |
-
)
|
223 |
-
eager_enabler = gr.Radio(
|
224 |
-
["Yes", "No"],
|
225 |
-
value="Yes",
|
226 |
-
label="Plot TF Eager Execution?",
|
227 |
-
interactive=True
|
228 |
-
)
|
229 |
gr.Markdown(
|
230 |
"""
|
231 |
-
###
|
232 |
-
- `
|
233 |
-
|
234 |
-
|
235 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
"""
|
237 |
)
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
plot_fn =
|
|
|
|
|
|
|
243 |
with gr.Row():
|
244 |
-
with gr.Column():
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
)
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
gr.Markdown(
|
258 |
"""
|
259 |
-
###
|
260 |
-
- `
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
"""
|
264 |
)
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
268 |
with gr.TabItem("Benchmark Information"):
|
269 |
gr.Dataframe(
|
270 |
headers=["Parameter", "Value"],
|
271 |
value=[
|
272 |
-
["Transformers Version", "4.
|
273 |
-
["
|
274 |
-
["Pytorch Version", "1.11.0"],
|
275 |
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
|
276 |
-
["CUDA", "11.
|
277 |
-
["Number of
|
278 |
-
["Is there code to reproduce?", "Yes -- https://
|
279 |
],
|
280 |
)
|
281 |
|
|
|
2 |
matplotlib.use('Agg')
|
3 |
|
4 |
import functools
|
|
|
5 |
import gradio as gr
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
import pandas as pd
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
FIGURE_PATH = "plt.png"
|
12 |
FIG_DPI = 300
|
13 |
|
14 |
|
15 |
+
def get_plot(task, gpu, omit_offload):
|
16 |
+
# slice the dataframe according to the inputs
|
17 |
+
df = pd.read_csv("data.csv")
|
18 |
+
df = df[df["task"] == task]
|
19 |
+
df = df[df["gpu"] == gpu]
|
20 |
+
if omit_offload == "Yes":
|
21 |
+
df = df[df["offload"] == 0]
|
22 |
+
|
23 |
+
# combine model name and dtype
|
24 |
+
df["model and dtype"] = df['model_name'].str.cat(df[['dtype']], sep=', ')
|
25 |
+
|
26 |
+
# fuse the two columns to be compared (original and assisted generation)
|
27 |
+
df = df.melt(
|
28 |
+
id_vars=["task", "gpu", "model and dtype", "offload"],
|
29 |
+
value_vars=["Greedy", "Assisted"],
|
30 |
+
var_name="generation_type",
|
31 |
+
value_name="generation_time",
|
32 |
+
)
|
33 |
|
34 |
g = sns.catplot(
|
35 |
data=df,
|
36 |
kind="bar",
|
37 |
+
x="model and dtype",
|
38 |
+
y="generation_time",
|
39 |
+
hue="generation_type",
|
40 |
+
palette={"Greedy": "blue", "Assisted": "orange"},
|
41 |
alpha=.9,
|
42 |
)
|
43 |
g.despine(left=True)
|
44 |
+
g.set_axis_labels("Model size and dtype", "Latency (ms/token)")
|
45 |
+
g.set_xticklabels(fontsize=7)
|
46 |
+
g.set_yticklabels(fontsize=7)
|
47 |
+
g.legend.set_title("Generation Type")
|
48 |
+
plt.setp(g._legend.get_texts(), fontsize='7') # for legend text
|
49 |
|
50 |
# Add the number to the top of each bar
|
51 |
ax = g.facet_axis(0, 0)
|
52 |
for i in ax.containers:
|
53 |
+
ax.bar_label(i, fontsize=7)
|
54 |
|
55 |
plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
|
56 |
return FIGURE_PATH
|
57 |
|
58 |
+
|
59 |
demo = gr.Blocks()
|
60 |
|
61 |
with demo:
|
62 |
gr.Markdown(
|
63 |
"""
|
64 |
+
# Assisted Generation Benchmark
|
|
|
|
|
|
|
|
|
|
|
65 |
"""
|
66 |
)
|
67 |
+
# components shared across tabs
|
68 |
+
omit_offload_fn = functools.partial(
|
69 |
+
gr.Radio, ["Yes", "No"], value="No", label="Omit cases with memory offload?", interactive=True
|
70 |
+
)
|
71 |
+
|
72 |
+
def gpu_selector_fn(gpu_list):
|
73 |
+
return gr.Dropdown(
|
74 |
+
gpu_list, value=gpu_list[-1], label="GPU", interactive=True
|
75 |
+
)
|
76 |
+
|
77 |
with gr.Tabs():
|
78 |
+
with gr.TabItem("OPT: Open Text Generation"):
|
79 |
+
plot_fn = functools.partial(get_plot, "OPT: Open Text Generation")
|
80 |
with gr.Row():
|
81 |
+
with gr.Column(scale=0.3):
|
82 |
+
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
|
83 |
+
omit_offload = omit_offload_fn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
gr.Markdown(
|
85 |
"""
|
86 |
+
### Assistant Model
|
87 |
+
- `facebook/opt-125m`
|
88 |
+
|
89 |
+
### Model Names:
|
90 |
+
- 1.3B: `facebook/opt-1.3b`
|
91 |
+
- 6.7B: `facebook/opt-6.7b`
|
92 |
+
- 30B: `facebook/opt-30b`
|
93 |
+
- 66B: `facebook/opt-66b`
|
94 |
+
|
95 |
+
### Dataset used as input prompt:
|
96 |
+
- C4 (en, validation set)
|
97 |
"""
|
98 |
)
|
99 |
+
# Show plot when the gradio app is initialized
|
100 |
+
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
|
101 |
+
# Update plot when any of the inputs change
|
102 |
+
plot_inputs = [gpu_selector, omit_offload]
|
103 |
+
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
104 |
+
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
105 |
+
with gr.TabItem("OPT: Summarization"):
|
106 |
+
plot_fn = functools.partial(get_plot, "OPT: Summarization")
|
107 |
with gr.Row():
|
108 |
+
with gr.Column(scale=0.3):
|
109 |
+
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
|
110 |
+
omit_offload = omit_offload_fn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
gr.Markdown(
|
112 |
"""
|
113 |
+
### Assistant Model
|
114 |
+
- `facebook/opt-125m`
|
115 |
+
|
116 |
+
### Model Names:
|
117 |
+
- 1.3B: `facebook/opt-1.3b`
|
118 |
+
- 6.7B: `facebook/opt-6.7b`
|
119 |
+
- 30B: `facebook/opt-30b`
|
120 |
+
- 66B: `facebook/opt-66b`
|
121 |
+
|
122 |
+
### Dataset used as input prompt:
|
123 |
+
- CNN Dailymail (3.0.0, validation set)
|
124 |
"""
|
125 |
)
|
126 |
+
# Show plot when the gradio app is initialized
|
127 |
+
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
|
128 |
+
# Update plot when any of the inputs change
|
129 |
+
plot_inputs = [gpu_selector, omit_offload]
|
130 |
+
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
131 |
+
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
132 |
+
with gr.TabItem("Whisper: ARS"):
|
133 |
+
plot_fn = functools.partial(get_plot, "Whisper: ARS")
|
134 |
with gr.Row():
|
135 |
+
with gr.Column(scale=0.3):
|
136 |
+
gpu_selector = gpu_selector_fn(["3090", "T4"])
|
137 |
+
omit_offload = omit_offload_fn()
|
138 |
+
gr.Markdown(
|
139 |
+
"""
|
140 |
+
### Assistant Model
|
141 |
+
- `openai/whisper-tiny`
|
142 |
+
|
143 |
+
### Model Names:
|
144 |
+
- large-v2: `openai/whisper-large-v2`
|
145 |
+
|
146 |
+
### Dataset used as input prompt:
|
147 |
+
- Librispeech ARS (clean, validation set)
|
148 |
+
"""
|
149 |
)
|
150 |
+
# Show plot when the gradio app is initialized
|
151 |
+
plot = gr.Image(value=plot_fn("T4", "No"))
|
152 |
+
# Update plot when any of the inputs change
|
153 |
+
plot_inputs = [gpu_selector, omit_offload]
|
154 |
+
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
155 |
+
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
156 |
+
with gr.TabItem("CodeGen: Code Generation"):
|
157 |
+
plot_fn = functools.partial(get_plot, "CodeGen: Code Generation")
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column(scale=0.3):
|
160 |
+
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
|
161 |
+
omit_offload = omit_offload_fn()
|
162 |
+
gr.Markdown(
|
163 |
+
"""
|
164 |
+
### Assistant Model
|
165 |
+
- `Salesforce/codegen-350M-mono`
|
166 |
+
|
167 |
+
### Model Names:
|
168 |
+
- 2B: `Salesforce/codegen-2B-mono`
|
169 |
+
- 6B: `Salesforce/codegen-6B-mono`
|
170 |
+
- 16B: `Salesforce/codegen-16B-mono`
|
171 |
+
|
172 |
+
### Dataset used as input prompt:
|
173 |
+
- The Stack (python)
|
174 |
+
"""
|
175 |
)
|
176 |
+
# Show plot when the gradio app is initialized
|
177 |
+
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
|
178 |
+
# Update plot when any of the inputs change
|
179 |
+
plot_inputs = [gpu_selector, omit_offload]
|
180 |
+
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
181 |
+
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
182 |
+
with gr.TabItem("Flan-T5: Summarization"):
|
183 |
+
plot_fn = functools.partial(get_plot, "Flan-T5: Summarization")
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column(scale=0.3):
|
186 |
+
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
|
187 |
+
omit_offload = omit_offload_fn()
|
188 |
gr.Markdown(
|
189 |
"""
|
190 |
+
### Assistant Model
|
191 |
+
- `google/flan-t5-small`
|
192 |
+
|
193 |
+
### Model Names:
|
194 |
+
- large: `google/flan-t5-large`
|
195 |
+
- xl: `google/flan-t5-xl`
|
196 |
+
- xxl: `google/flan-t5-xxl`
|
197 |
+
- ul2: `google/flan-ul2`
|
198 |
+
|
199 |
+
### Dataset used as input prompt:
|
200 |
+
- CNN Dailymail (3.0.0, validation set)
|
201 |
"""
|
202 |
)
|
203 |
+
# Show plot when the gradio app is initialized
|
204 |
+
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
|
205 |
+
# Update plot when any of the inputs change
|
206 |
+
plot_inputs = [gpu_selector, omit_offload]
|
207 |
+
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
208 |
+
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
|
209 |
with gr.TabItem("Benchmark Information"):
|
210 |
gr.Dataframe(
|
211 |
headers=["Parameter", "Value"],
|
212 |
value=[
|
213 |
+
["Transformers Version", "4.29dev0"],
|
214 |
+
["Pytorch Version", "2.0.0"],
|
|
|
215 |
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
|
216 |
+
["CUDA", "11.8 (3090) / 11.3 (others GPUs)"],
|
217 |
+
["Number of input samples", "20-100 (depending on the model size)"],
|
218 |
+
["Is there code to reproduce?", "Yes -- https://github.com/gante/huggingface-demos/tree/main/experiments/faster_generation"],
|
219 |
],
|
220 |
)
|
221 |
|
data.csv
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gpu,task,model_name,dtype,offload,Greedy,Assisted
|
2 |
+
3090,OPT: Open Text Generation,1.3B,FP32,0,11.64,10.01
|
3 |
+
3090,OPT: Open Text Generation,6.7B,FP32,1,428.47,114.99
|
4 |
+
3090,OPT: Open Text Generation,6.7B,FP16,0,19.62,12.44
|
5 |
+
3090,OPT: Open Text Generation,6.7B,INT8,0,104.43,40.33
|
6 |
+
3090,OPT: Open Text Generation,30B,FP16,1,2616,1099
|
7 |
+
3090,OPT: Summarization,1.3B,FP32,0,13.16,10.89
|
8 |
+
3090,OPT: Summarization,6.7B,FP32,1,587.8,114.53
|
9 |
+
3090,OPT: Summarization,6.7B,FP16,0,25.14,14.56
|
10 |
+
3090,OPT: Summarization,30B,FP16,1,2732,331.2
|
11 |
+
3090,Whisper: ARS,large-v2,FP32,0,24.81,12.55
|
12 |
+
3090,CodeGen: Code Generation,2B,FP32,0,28.90,28.36
|
13 |
+
3090,CodeGen: Code Generation,6B,FP32,1,544.11,110.42
|
14 |
+
3090,CodeGen: Code Generation,6B,FP16,0,34.36,31.84
|
15 |
+
3090,CodeGen: Code Generation,16B,FP16,1,808.69,161.50
|
16 |
+
3090,CodeGen: Code Generation,16B,INT8,0,66.69,41.47
|
17 |
+
3090,Flan-T5: Summarization,large,FP32,0,21.27,15.76
|
18 |
+
3090,Flan-T5: Summarization,xl,FP32,0,25.60,18.94
|
19 |
+
3090,Flan-T5: Summarization,xxl,FP32,1,1326.22,580.10
|
20 |
+
3090,Flan-T5: Summarization,xxl,FP16,1,52.52,36.07
|
21 |
+
3090,Flan-T5: Summarization,xxl,INT8,0,67.13,38.92
|
22 |
+
3090,Flan-T5: Summarization,ul2,FP16,1,1185.25,480.11
|
23 |
+
|
24 |
+
T4,OPT: Open Text Generation,1.3B,FP32,0,24.74,22.37
|
25 |
+
T4,OPT: Open Text Generation,6.7B,FP32,1,2863.57,733.32
|
26 |
+
T4,OPT: Open Text Generation,6.7B,FP16,0,62.04,29.67
|
27 |
+
T4,OPT: Open Text Generation,6.7B,INT8,0,180.59,66.12
|
28 |
+
T4,OPT: Summarization,1.3B,FP32,0,32.50,26.58
|
29 |
+
T4,OPT: Summarization,6.7B,FP16,1,499.00,67.33
|
30 |
+
T4,OPT: Summarization,6.7B,INT8,0,182.98,37.89
|
31 |
+
T4,Whisper: ARS,large-v2,FP32,0,62.68,40.74
|
32 |
+
T4,CodeGen: Code Generation,2B,FP32,0,73.88,67.62
|
33 |
+
T4,CodeGen: Code Generation,6B,FP16,1,682.94,135.99
|
34 |
+
T4,CodeGen: Code Generation,6B,INT8,0,117.91,72.40
|
35 |
+
T4,Flan-T5: Summarization,large,FP32,0,43.67,36.26
|
36 |
+
T4,Flan-T5: Summarization,xl,FP16,0,53.54,42.27
|
37 |
+
T4,Flan-T5: Summarization,xxl,FP16,1,2814,1177
|
38 |
+
|
39 |
+
T4 *2,OPT: Open Text Generation,6.7B,FP32,0,118.42,55.42
|
40 |
+
T4 *2,OPT: Open Text Generation,6.7B,FP16,0,61.30,34.76
|
41 |
+
T4 *2,OPT: Summarization,6.7B,FP32,1,1238.59,339.34
|
42 |
+
T4 *2,OPT: Summarization,6.7B,FP16,0,94.62,34.37
|
43 |
+
T4 *2,CodeGen: Code Generation,6B,FP16,0,116.34,72.09
|
44 |
+
T4 *2,CodeGen: Code Generation,6B,INT8,0,119.14,79.01
|
45 |
+
T4 *2,CodeGen: Code Generation,16B,FP16,1,1509.05,693.01
|
46 |
+
T4 *2,CodeGen: Code Generation,16B,INT8,0,200.79,99.00
|
47 |
+
T4 *2,Flan-T5: Summarization,xl,FP32,0,59.27,68.70
|
48 |
+
T4 *2,Flan-T5: Summarization,xl,FP16,0,51.59,50.56
|
49 |
+
T4 *2,Flan-T5: Summarization,xxl,FP16,1,797.7,534.3
|
50 |
+
T4 *2,Flan-T5: Summarization,xxl,INT8,0,243.3,143.38
|
51 |
+
|
52 |
+
A100 (80GB),OPT: Open Text Generation,6.7B,FP32,0,35.34,30.00
|
53 |
+
A100 (80GB),OPT: Open Text Generation,30B,FP16,0,54.57,38.27
|
54 |
+
A100 (80GB),OPT: Open Text Generation,30B,INT8,0,290.82,135.77
|
55 |
+
A100 (80GB),OPT: Open Text Generation,66B,INT8,0,398.49,146.04
|
56 |
+
A100 (80GB),OPT: Summarization,6.7B,FP32,0,43.64,27.03
|
57 |
+
A100 (80GB),OPT: Summarization,30B,FP16,0,54.94,28.87
|
58 |
+
A100 (80GB),OPT: Summarization,30B,INT8,0,291.57,49.42
|
59 |
+
A100 (80GB),OPT: Summarization,66B,INT8,0,392.34,82.29
|
60 |
+
A100 (80GB),CodeGen: Code Generation,16B,FP32,0,75.56,80.44
|
61 |
+
A100 (80GB),CodeGen: Code Generation,16B,FP16,0,70.51,74.79
|
62 |
+
A100 (80GB),CodeGen: Code Generation,16B,INT8,0,130.77,90.28
|
63 |
+
A100 (80GB),Flan-T5: Summarization,ul2,FP32,0,87.40,59.26
|
64 |
+
A100 (80GB),Flan-T5: Summarization,ul2,FP16,0,78.13,42.95
|
65 |
+
A100 (80GB),Flan-T5: Summarization,ul2,INT8,0,187.66,81.72
|
plt.png
ADDED