Spaces:
Sleeping
Sleeping
little cleanup and lowering the model temp
Browse files
app.py
CHANGED
@@ -140,28 +140,6 @@ def plt_wordcloud(president, _df):
|
|
140 |
return fig6
|
141 |
|
142 |
|
143 |
-
def summarization(speech_key, _df):
|
144 |
-
client = InferenceClient(model="facebook/bart-large-cnn")
|
145 |
-
chunk_len = 4000
|
146 |
-
speech = _df[_df["speech_key"] == speech_key]["speech_html"].values[0]
|
147 |
-
sotu_chunks = int(math.ceil(len(speech) / chunk_len))
|
148 |
-
response = []
|
149 |
-
for chunk in range(1, sotu_chunks + 1):
|
150 |
-
if chunk * 4000 < len(speech):
|
151 |
-
chunk_text = speech[(chunk - 1) * chunk_len : chunk * chunk_len]
|
152 |
-
else:
|
153 |
-
chunk_text = speech[(chunk - 1) * chunk_len :]
|
154 |
-
try:
|
155 |
-
summarization_chunk = client.summarization(
|
156 |
-
chunk_text, parameters={"truncation": "do_not_truncate"}
|
157 |
-
)
|
158 |
-
except Exception as e:
|
159 |
-
print(e)
|
160 |
-
response.append(summarization_chunk.summary_text)
|
161 |
-
|
162 |
-
return "\n\n".join(response)
|
163 |
-
|
164 |
-
|
165 |
def streaming(speech_key, _df):
|
166 |
client = InferenceClient(token=os.environ["HF_TOKEN"])
|
167 |
speech = _df[_df["speech_key"] == speech_key]["speech_html"].values[0]
|
@@ -181,10 +159,8 @@ def streaming(speech_key, _df):
|
|
181 |
],
|
182 |
max_tokens=1200,
|
183 |
stream=True,
|
184 |
-
temperature=0.
|
185 |
):
|
186 |
-
# yield message.choices[0].delta.content
|
187 |
-
# print(message)
|
188 |
messages.append(message.choices[0].delta.content)
|
189 |
return "".join(messages)
|
190 |
|
@@ -203,7 +179,7 @@ with gr.Blocks() as demo:
|
|
203 |
)
|
204 |
|
205 |
gr.Markdown(
|
206 |
-
"In addition to analyzing the content, this space also leverages the [Qwen/2.5-72B-Instruct](https://deepinfra.com/Qwen/Qwen2.5-72B-Instruct) model to summarize a speech. The model is tasked with providing a concise summary of a speech from a given president.
|
207 |
)
|
208 |
|
209 |
with gr.Tab(label="Summarize a Speech"):
|
|
|
140 |
return fig6
|
141 |
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
def streaming(speech_key, _df):
|
144 |
client = InferenceClient(token=os.environ["HF_TOKEN"])
|
145 |
speech = _df[_df["speech_key"] == speech_key]["speech_html"].values[0]
|
|
|
159 |
],
|
160 |
max_tokens=1200,
|
161 |
stream=True,
|
162 |
+
temperature=0.25,
|
163 |
):
|
|
|
|
|
164 |
messages.append(message.choices[0].delta.content)
|
165 |
return "".join(messages)
|
166 |
|
|
|
179 |
)
|
180 |
|
181 |
gr.Markdown(
|
182 |
+
"In addition to analyzing the content, this space also leverages the [Qwen/2.5-72B-Instruct](https://deepinfra.com/Qwen/Qwen2.5-72B-Instruct) model to summarize a speech. The model is tasked with providing a concise summary of a speech from a given president. Pick a speech from the dropdown and click 'Summarize' on the 'Summarize a Speech' tab."
|
183 |
)
|
184 |
|
185 |
with gr.Tab(label="Summarize a Speech"):
|