File size: 43,143 Bytes
e195352
 
 
 
 
 
 
 
 
 
 
2b243c6
e195352
2b243c6
e195352
2b243c6
e195352
2b243c6
 
e195352
2b243c6
e195352
2b243c6
 
 
 
 
 
 
 
 
 
e195352
2b243c6
e195352
2b243c6
 
e195352
2b243c6
 
 
 
 
 
 
 
 
 
 
e195352
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e195352
 
 
 
 
 
 
 
 
 
 
2b243c6
e195352
 
 
 
 
 
 
 
2b243c6
e195352
 
 
 
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e195352
 
 
 
 
 
 
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4535a
e195352
3d4535a
2b243c6
3d4535a
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4535a
 
 
 
 
 
 
 
2b243c6
3d4535a
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
3d4535a
 
 
 
2b243c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e195352
 
 
 
 
 
 
 
 
 
 
 
 
 
2b243c6
 
e195352
 
d642cc1
c07ada2
e195352
d642cc1
d149e20
d642cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
676984e
 
 
d642cc1
 
 
3756015
d642cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
f3caa5b
c07ada2
 
f3caa5b
c07ada2
 
f3caa5b
c07ada2
 
f3caa5b
c07ada2
 
f3caa5b
676984e
 
 
 
e195352
 
 
2b243c6
e195352
 
 
 
 
 
 
 
 
2b243c6
e195352
 
 
d4bcb75
e195352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b243c6
e195352
 
 
 
 
 
 
 
 
 
d4bcb75
e195352
 
 
 
 
 
e974ac1
e195352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b2f75
 
 
 
f02d175
c2b2f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e195352
 
 
 
c07ada2
e195352
 
 
 
 
 
 
 
 
 
 
2b243c6
e195352
2b243c6
e195352
 
2b243c6
e195352
 
2b243c6
e195352
 
 
 
2b243c6
e195352
2b243c6
e195352
 
 
 
 
 
 
 
2b243c6
e195352
2b243c6
e195352
 
3d4535a
e195352
 
 
 
 
2b243c6
e195352
2b243c6
e195352
 
 
 
 
 
 
 
 
 
 
 
 
2b243c6
 
e195352
3d4535a
e195352
 
 
 
2b243c6
e195352
2b243c6
e195352
 
 
 
 
 
 
2b243c6
 
e195352
 
 
 
2b243c6
e195352
2b243c6
e195352
 
2b243c6
e195352
 
d4bcb75
 
2b243c6
 
 
d4bcb75
e195352
 
00c561f
e195352
 
2b243c6
 
 
 
3d4535a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
# import subprocess
# import re
# from typing import List, Tuple, Optional
# command = ["python", "setup.py", "build_ext", "--inplace"]
# result = subprocess.run(command, capture_output=True, text=True)
# print("Output:\n", result.stdout)
# print("Errors:\n", result.stderr)
# if result.returncode == 0:
#     print("Command executed successfully.")
# else:
#     print("Command failed with return code:", result.returncode)
import datetime
import gc
import hashlib
import math
import multiprocessing as mp
import os
import threading
import time
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import shutil
import ffmpeg
from moviepy.editor import ImageSequenceClip
import zipfile
# import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.build_sam import build_sam2_video_predictor
import cv2
import uuid

user_processes = {}
PROCESS_TIMEOUT = datetime.timedelta(minutes=4)

def reset(seg_tracker):
    if seg_tracker is not None:
        predictor, inference_state, image_predictor = seg_tracker
        predictor.reset_state(inference_state)
        del predictor
        del inference_state
        del image_predictor
        del seg_tracker
        gc.collect()
        torch.cuda.empty_cache()
    return None, ({}, {}), None, None, 0, None, None, None, 0

def extract_video_info(input_video):
    if input_video is None:
        return 4, 4, None, None, None, None, None
    cap = cv2.VideoCapture(input_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    return fps, total_frames, None, None, None, None, None

def get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
    output_dir = f'/tmp/output_frames/{session_id}'
    output_masks_dir = f'/tmp/output_masks/{session_id}'
    output_combined_dir = f'/tmp/output_combined/{session_id}'
    clear_folder(output_dir)
    clear_folder(output_masks_dir)
    clear_folder(output_combined_dir)
    if input_video is None:
        return None, ({}, {}), None, None, (4, 1, 4), None, None, None, 0
    cap = cv2.VideoCapture(input_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    frame_interval = max(1, int(fps // scale_slider))
    print(f"frame_interval: {frame_interval}")
    try:
        ffmpeg.input(input_video, hwaccel='cuda').output(
            os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0, 
            vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
        ).run()
    except:
        print(f"ffmpeg cuda err")
        ffmpeg.input(input_video).output(
            os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0, 
            vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
        ).run()

    first_frame_path = os.path.join(output_dir, '0000000.jpg')
    first_frame = cv2.imread(first_frame_path)
    first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)

    torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
    if torch.cuda.get_device_properties(0).major >= 8:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

    sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_tiny.pt"
    model_cfg = "sam2_hiera_t.yaml"
    if checkpoint == "samll":
        sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_small.pt"
        model_cfg = "sam2_hiera_s.yaml"
    elif checkpoint == "base-plus":
        sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_base_plus.pt"
        model_cfg = "sam2_hiera_b+.yaml"
    elif checkpoint == "large":
        sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_large.pt"
        model_cfg = "sam2_hiera_l.yaml"
    
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
    sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
    image_predictor = SAM2ImagePredictor(sam2_model)
    inference_state = predictor.init_state(video_path=output_dir)
    predictor.reset_state(inference_state)
    return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, (fps, frame_interval, total_frames), None, None, None, 0

def mask2bbox(mask):
    if len(np.where(mask > 0)[0]) == 0:
        print(f'not mask')
        return np.array([0, 0, 0, 0]).astype(np.int64), False
    x_ = np.sum(mask, axis=0)
    y_ = np.sum(mask, axis=1)
    x0 = np.min(np.nonzero(x_)[0])
    x1 = np.max(np.nonzero(x_)[0])
    y0 = np.min(np.nonzero(y_)[0])
    y1 = np.max(np.nonzero(y_)[0])
    return np.array([x0, y0, x1, y1]).astype(np.int64), True

def sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id):
    predictor, inference_state, image_predictor = seg_tracker
    image_path = f'/tmp/output_frames/{session_id}/{frame_num:07d}.jpg'
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    display_image = drawing_board["image"]
    image_predictor.set_image(image)
    input_mask = drawing_board["mask"]
    input_mask[input_mask != 0] = 255
    if last_draw is not None:
        diff_mask = cv2.absdiff(input_mask, last_draw)
        input_mask = diff_mask
    bbox, hasMask = mask2bbox(input_mask[:, :, 0]) 
    if not hasMask :
        return seg_tracker, display_image, display_image, None
    masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,)
    mask = masks > 0.0
    masked_frame = show_mask(mask, display_image, ann_obj_id)
    masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id)
    frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0])
    last_draw = drawing_board["mask"]
    return seg_tracker, masked_with_rect, masked_with_rect, last_draw

def draw_rect(image, bbox, obj_id):
    cmap = plt.get_cmap("tab10")
    color = np.array(cmap(obj_id)[:3])
    rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
    inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
    x0, y0, x1, y1 = bbox
    image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), rgb_color, thickness=2)
    return image_with_rect

def sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point):
    points_dict, labels_dict = click_stack
    predictor, inference_state, image_predictor = seg_tracker
    ann_frame_idx = frame_num  # the frame index we interact with
    print(f'ann_frame_idx: {ann_frame_idx}')
    if point_mode == "Positive":
        label = np.array([1], np.int32)
    else:
        label = np.array([0], np.int32)

    if ann_frame_idx not in points_dict:
        points_dict[ann_frame_idx] = {}
    if ann_frame_idx not in labels_dict:
        labels_dict[ann_frame_idx] = {}

    if ann_obj_id not in points_dict[ann_frame_idx]:
        points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32)
    if ann_obj_id not in labels_dict[ann_frame_idx]:
        labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32)

    points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0)
    labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0)

    click_stack = (points_dict, labels_dict)

    frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points(
        inference_state=inference_state,
        frame_idx=ann_frame_idx,
        obj_id=ann_obj_id,
        points=points_dict[ann_frame_idx][ann_obj_id],
        labels=labels_dict[ann_frame_idx][ann_obj_id],
    )

    image_path = f'/tmp/output_frames/{session_id}/{ann_frame_idx:07d}.jpg'
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    masked_frame = image.copy()
    for i, obj_id in enumerate(out_obj_ids):
        mask = (out_mask_logits[i] > 0.0).cpu().numpy()
        masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
    masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx])

    return seg_tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack

def draw_markers(image, points_dict, labels_dict):
    cmap = plt.get_cmap("tab10")
    image_h, image_w = image.shape[:2]
    marker_size = max(1, int(min(image_h, image_w) * 0.05))

    for obj_id in points_dict:
        color = np.array(cmap(obj_id)[:3])
        rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
        inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
        for point, label in zip(points_dict[obj_id], labels_dict[obj_id]):
            x, y = int(point[0]), int(point[1])
            if label == 1:
                cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2)
            else:
                cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2)
    
    return image

def show_mask(mask, image=None, obj_id=None):
    cmap = plt.get_cmap("tab10")
    cmap_idx = 0 if obj_id is None else obj_id
    color = np.array([*cmap(cmap_idx)[:3], 0.6])
    
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    mask_image = (mask_image * 255).astype(np.uint8)
    if image is not None:
        image_h, image_w = image.shape[:2]
        if (image_h, image_w) != (h, w):
            raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match")
        colored_mask = np.zeros_like(image, dtype=np.uint8)
        for c in range(3):
            colored_mask[..., c] = mask_image[..., c]
        alpha_mask = mask_image[..., 3] / 255.0
        for c in range(3):
            image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c])
        return image
    return mask_image

def show_res_by_slider(session_id, frame_per, click_stack):
    image_path = f'/tmp/output_frames/{session_id}'
    output_combined_dir = f'/tmp/output_combined/{session_id}'
    
    combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
    if combined_frames:
        output_masked_frame_path = combined_frames
    else:
        original_frames = sorted([os.path.join(image_path, img_name) for img_name in os.listdir(image_path)])
        output_masked_frame_path = original_frames
       
    total_frames_num = len(output_masked_frame_path)
    if total_frames_num == 0:
        print("No output results found")
        return None, None, 0
    else:
        frame_num = math.floor(total_frames_num * frame_per / 100)
        if frame_per == 100:
            frame_num = frame_num - 1
        chosen_frame_path = output_masked_frame_path[frame_num]
        print(f"{chosen_frame_path}")
        chosen_frame_show = cv2.imread(chosen_frame_path)
        chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
        points_dict, labels_dict = click_stack
        if frame_num in points_dict and frame_num in labels_dict:
            chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
        return chosen_frame_show, chosen_frame_show, frame_num

def clear_folder(folder_path):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)
    os.makedirs(folder_path)

def zip_folder(folder_path, output_zip_path):
    with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf:
        for root, _, files in os.walk(folder_path):
            for file in files:
                file_path = os.path.join(root, file)
                zipf.write(file_path, os.path.relpath(file_path, folder_path))

def tracking_objects(session_id, seg_tracker, frame_num, input_video):
    output_dir = f'/tmp/output_frames/{session_id}'
    output_masks_dir = f'/tmp/output_masks/{session_id}'
    output_combined_dir = f'/tmp/output_combined/{session_id}'
    output_files_dir = f'/tmp/output_files/{session_id}'
    output_video_path = f'{output_files_dir}/output_video.mp4'
    output_zip_path = f'{output_files_dir}/output_masks.zip'
    clear_folder(output_masks_dir)
    clear_folder(output_combined_dir)
    clear_folder(output_files_dir)
    video_segments = {}
    predictor, inference_state, image_predictor = seg_tracker
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
    frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')])
    # for frame_idx in sorted(video_segments.keys()):
    for frame_file in frame_files:
        frame_idx = int(os.path.splitext(frame_file)[0])
        frame_path = os.path.join(output_dir, frame_file)
        image = cv2.imread(frame_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        masked_frame = image.copy()
        if frame_idx in video_segments:
            for obj_id, mask in video_segments[frame_idx].items():
                masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
                mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png')
                cv2.imwrite(mask_output_path, show_mask(mask))
        combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png')
        combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR)
        cv2.imwrite(combined_output_path, combined_image_bgr)
        if frame_idx == frame_num:
            final_masked_frame = masked_frame

    cap = cv2.VideoCapture(input_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    cap.release()
    # output_frames = int(total_frames * scale_slider)
    output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')])
    out_fps = fps * output_frames / total_frames

    # ffmpeg.input(os.path.join(output_combined_dir, '%07d.png'), framerate=out_fps).output(output_video_path, vcodec='h264_nvenc', pix_fmt='yuv420p').run()

    # fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    # out = cv2.VideoWriter(output_video_path, fourcc, out_fps, (frame_width, frame_height))
    # for i in range(output_frames):
    #     frame_path = os.path.join(output_combined_dir, f'{i:07d}.png')
    #     frame = cv2.imread(frame_path)
    #     out.write(frame)
    # out.release()

    image_files = [os.path.join(output_combined_dir, f'{i:07d}.png') for i in range(output_frames)]
    clip = ImageSequenceClip(image_files, fps=out_fps)
    clip.write_videofile(output_video_path, codec="libx264", fps=out_fps)

    zip_folder(output_masks_dir, output_zip_path)
    print("done")
    return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path

def increment_ann_obj_id(ann_obj_id):
    ann_obj_id += 1
    return ann_obj_id

def drawing_board_get_input_first_frame(input_first_frame):
    return input_first_frame

def process_video(queue, result_queue, session_id):
    seg_tracker = None
    click_stack = ({}, {})
    frame_num = int(0)
    ann_obj_id =int(0)
    last_draw = None
    while True:
        task = queue.get() 
        if task["command"] == "exit":
            print(f"Process for {session_id} exiting.")
            break
        elif task["command"] == "extract_video_info":
            input_video = task["input_video"]
            fps, total_frames, input_first_frame, drawing_board, output_video, output_mp4, output_mask = extract_video_info(input_video)
            result_queue.put({"fps": fps, "total_frames": total_frames, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
        elif task["command"] == "get_meta_from_video":
            input_video = task["input_video"]
            scale_slider = task["scale_slider"]
            checkpoint = task["checkpoint"]
            seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = get_meta_from_video(session_id, input_video, scale_slider, checkpoint)
            result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
        elif task["command"] == "sam_stroke":
            drawing_board = task["drawing_board"]
            last_draw = task["last_draw"]
            frame_num = task["frame_num"]
            ann_obj_id = task["ann_obj_id"]
            seg_tracker, input_first_frame, drawing_board, last_draw = sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id)
            result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
        elif task["command"] == "sam_click":
            frame_num = task["frame_num"]
            point_mode = task["point_mode"]
            click_stack = task["click_stack"]
            ann_obj_id = task["ann_obj_id"]
            point = task["point"]
            seg_tracker, input_first_frame, drawing_board, last_draw = sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point)
            result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
        elif task["command"] == "increment_ann_obj_id":
            ann_obj_id = task["ann_obj_id"]
            ann_obj_id = increment_ann_obj_id(ann_obj_id)
            result_queue.put({"ann_obj_id": ann_obj_id})
        elif task["command"] == "drawing_board_get_input_first_frame":
            input_first_frame = task["input_first_frame"]
            input_first_frame = drawing_board_get_input_first_frame(input_first_frame)
            result_queue.put({"input_first_frame": input_first_frame})
        elif task["command"] == "reset":
            seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = reset(seg_tracker)
            result_queue.put({"click_stack": click_stack, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
        elif task["command"] == "show_res_by_slider":
            frame_per = task["frame_per"]
            click_stack = task["click_stack"]
            input_first_frame, drawing_board, frame_num = show_res_by_slider(session_id, frame_per, click_stack)
            result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_num": frame_num})
        elif task["command"] == "tracking_objects":
            frame_num = task["frame_num"]
            input_video = task["input_video"]
            input_first_frame, drawing_board, output_video, output_mp4, output_mask = tracking_objects(session_id, seg_tracker, frame_num, input_video)
            result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
        else:
            print(f"Unknown command {task['command']} for {session_id}")
            result_queue.put("Unknown command")

def start_process(session_id):
    if session_id not in user_processes:
        queue = mp.Queue()
        result_queue = mp.Queue()
        process = mp.Process(target=process_video, args=(queue, result_queue, session_id))
        process.start()
        user_processes[session_id] = {
            "process": process,
            "queue": queue,
            "result_queue": result_queue,
            "last_active": datetime.datetime.now()
        }
    else:
        user_processes[session_id]["last_active"] = datetime.datetime.now()
    return user_processes[session_id]["queue"]

# def clean_up_processes(session_id, init_clean = False):
#     now = datetime.datetime.now()
#     to_remove = []
#     for s_id, process_info in user_processes.items():
#         if (now - process_info["last_active"] > PROCESS_TIMEOUT) or (s_id == session_id and init_clean):
#             process_info["queue"].put({"command": "exit"})
#             process_info["process"].terminate()
#             process_info["process"].join()
#             to_remove.append(s_id)
#     for s_id in to_remove:
#         del user_processes[s_id]
#         print(f"Cleaned up process for session {s_id}.")
        
def monitor_and_cleanup_processes():
    while True:
        now = datetime.datetime.now()
        to_remove = []
        for session_id, process_info in user_processes.items():
            if now - process_info["last_active"] > PROCESS_TIMEOUT:
                process_info["queue"].put({"command": "exit"})
                process_info["process"].terminate()
                process_info["process"].join()
                to_remove.append(session_id)
        for session_id in to_remove:
            del user_processes[session_id]
            print(f"Automatically cleaned up process for session {session_id}.")
        time.sleep(10)

def seg_track_app():

    import gradio as gr
    
    def extract_session_id_from_request(request: gr.Request):
        session_id = hashlib.sha256(f'{request.client.host}:{request.client.port}'.encode('utf-8')).hexdigest()
        # cookies = request.kwargs["headers"].get('cookie', '')
        # session_id = None
        # if '_gid=' in cookies:
        #     session_id = cookies.split('_gid=')[1].split(';')[0]
        # else:
        #     session_id = str(uuid.uuid4())
        print(f"session_id {session_id}")
        return session_id

    def handle_extract_video_info(session_id, input_video):
        # clean_up_processes(session_id, init_clean=True)
        if input_video == None:
            return 0, 0, None, None, None, None, None
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "extract_video_info", "input_video": input_video})
        result = result_queue.get()
        fps = result.get("fps")
        total_frames = result.get("total_frames")
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        output_video = result.get("output_video")
        output_mp4 = result.get("output_mp4")
        output_mask = result.get("output_mask")
        scale_slider = gr.Slider.update(minimum=1.0,
                                    maximum=fps,
                                    step=1.0,
                                    value=fps,)
        frame_per = gr.Slider.update(minimum= 0.0,
                                maximum= total_frames / fps,
                                step=1.0/fps,
                                value=0.0,)
        return scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask

    def handle_get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "get_meta_from_video", "input_video": input_video, "scale_slider": scale_slider, "checkpoint": checkpoint})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        (fps, frame_interval, total_frames) = result.get("frame_per")
        output_video = result.get("output_video")
        output_mp4 = result.get("output_mp4")
        output_mask = result.get("output_mask")
        ann_obj_id = result.get("ann_obj_id")
        frame_per = gr.Slider.update(minimum= 0.0,
                                maximum= total_frames / fps,
                                step=frame_interval / fps,
                                value=0.0,)
        return input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id

    def handle_sam_stroke(session_id, drawing_board, last_draw, frame_num, ann_obj_id):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "sam_stroke", "drawing_board": drawing_board, "last_draw": last_draw, "frame_num": frame_num, "ann_obj_id": ann_obj_id})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        last_draw = result.get("last_draw")
        return input_first_frame, drawing_board, last_draw

    def handle_sam_click(session_id, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32)
        queue.put({"command": "sam_click", "frame_num": frame_num, "point_mode": point_mode, "click_stack": click_stack, "ann_obj_id": ann_obj_id, "point": point})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        last_draw = result.get("last_draw")
        return input_first_frame, drawing_board, last_draw

    def handle_increment_ann_obj_id(session_id, ann_obj_id):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "increment_ann_obj_id", "ann_obj_id": ann_obj_id})
        result = result_queue.get()
        ann_obj_id = result.get("ann_obj_id")
        return ann_obj_id

    def handle_drawing_board_get_input_first_frame(session_id, input_first_frame):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "drawing_board_get_input_first_frame", "input_first_frame": input_first_frame})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        return input_first_frame

    def handle_reset(session_id):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "reset"})
        result = result_queue.get()
        click_stack = result.get("click_stack")
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        frame_per = result.get("frame_per")
        output_video = result.get("output_video")
        output_mp4 = result.get("output_mp4")
        output_mask = result.get("output_mask")
        ann_obj_id = result.get("ann_obj_id")
        return click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id

    def handle_show_res_by_slider(session_id, frame_per, click_stack):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "show_res_by_slider", "frame_per": frame_per, "click_stack": click_stack})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        frame_num = result.get("frame_num")
        return input_first_frame, drawing_board, frame_num

    def handle_tracking_objects(session_id, frame_num, input_video):
        # clean_up_processes(session_id)
        queue = start_process(session_id)
        result_queue = user_processes[session_id]["result_queue"]
        queue.put({"command": "tracking_objects", "frame_num": frame_num, "input_video": input_video})
        result = result_queue.get()
        input_first_frame = result.get("input_first_frame")
        drawing_board = result.get("drawing_board")
        output_video = result.get("output_video")
        output_mp4 = result.get("output_mp4")
        output_mask = result.get("output_mask")
        return input_first_frame, drawing_board, output_video, output_mp4, output_mask

    ##########################################################
    ######################  Front-end ########################
    ##########################################################
    css = """
    #input_output_video video {
        max-height: 550px;
        max-width: 100%;
        height: auto;
    }
    """

    app = gr.Blocks(css=css)
    with app:
        session_id = gr.State()
        app.load(extract_session_id_from_request, None, session_id)
        gr.Markdown(
            '''
            <div style="text-align:center; margin-bottom:20px;">
                <span style="font-size:3em; font-weight:bold;">MedSAM2 for Video Segmentation 🔥</span>
            </div>
            <div style="text-align:center; margin-bottom:10px;">
                <span style="font-size:1.5em; font-weight:bold;">MedSAM2-Segment Anything in Medical Images and Videos: Benchmark and Deployment</span>
            </div>
            <div style="text-align:center; margin-bottom:20px;">
                <a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2">
                    <img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://arxiv.org/abs/2408.03322">
                    <img src="https://img.shields.io/badge/arXiv-2408.03322-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://github.com/bowang-lab/MedSAMSlicer/tree/SAM2">
                    <img src="https://img.shields.io/badge/3D-Slicer-Plugin" alt="3D Slicer Plugin" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://drive.google.com/drive/folders/1EXzRkxZmrXbahCFA8_ImFRM6wQDEpOSe?usp=sharing">
                    <img src="https://img.shields.io/badge/Video-Tutorial-green?style=plastic" alt="Video Tutorial" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2?tab=readme-ov-file#fine-tune-sam2-on-the-abdomen-ct-dataset">
                    <img src="https://img.shields.io/badge/Fine--tune-SAM2-blue" alt="Fine-tune SAM2" style="display:inline-block; margin-right:10px;">
                </a>
            </div>
            <div style="text-align:left; margin-bottom:20px;">
                This API supports using box (generated by scribble) and point prompts for video segmentation with 
                <a href="https://ai.meta.com/sam2/" target="_blank">SAM2</a>. Welcome to join our <a href="https://forms.gle/hk4Efp6uWnhjUHFP6" target="_blank">mailing list</a> to get updates or send feedback.
            </div>
            <div style="margin-bottom:20px;">
                <ol style="list-style:none; padding-left:0;">
                    <li>1. Upload video file</li>
                    <li>2. Select model size and downsample frame rate and run <b>Preprocess</b></li>
                    <li>3. Use <b>Stroke to Box Prompt</b> to draw box on the first frame or <b>Point Prompt</b> to click on the first frame.</li>
                    <li>&nbsp;&nbsp;&nbsp;Note: The bounding rectangle of the stroke should be able to cover the segmentation target.</li>
                    <li>4. Click <b>Segment</b> to get the segmentation result</li>
                    <li>5. Click <b>Add New Object</b> to add new object</li>
                    <li>6. Click <b>Start Tracking</b> to track objects in the video</li>
                    <li>7. Click <b>Reset</b> to reset the app</li>
                    <li>8. Download the video with segmentation results</li>
                </ol>
            </div>
            <div style="text-align:left; line-height:1.8;">
                We designed this API and <a href="https://github.com/bowang-lab/MedSAMSlicer/tree/SAM2" target="_blank">3D Slicer Plugin</a> for medical image and video segmentation where the checkpoints are based on the original SAM2 models (<a href="https://github.com/facebookresearch/segment-anything-2" target="_blank">https://github.com/facebookresearch/segment-anything-2</a>). The image segmentation fine-tune code has been released on <a href="https://github.com/bowang-lab/MedSAM/tree/MedSAM2?tab=readme-ov-file#fine-tune-sam2-on-the-abdomen-ct-dataset" target="_blank">GitHub</a>. The video fine-tuning code is under active development and will be released as well.  
            </div>
            <div style="text-align:left; line-height:1.8;">
                If you find these tools useful, please consider citing the following papers:
            </div>
            <div style="text-align:left; line-height:1.8;">
                Ravi, N., Gabeur, V., Hu, Y.T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K.V., Carion, N., Wu, C.Y., Girshick, R., Dollár, P., Feichtenhofer, C.: SAM 2: Segment Anything in Images and Videos. arXiv:2408.00714 (2024)
            </div>            
            <div style="text-align:left; line-height:1.8;">
                Ma, J., Kim, S., Li, F., Baharoon, M., Asakereh, R., Lyu, H., Wang, B.: Segment Anything in Medical Images and Videos: Benchmark and Deployment. arXiv preprint arXiv:2408.03322 (2024)
            </div> 
            <div style="text-align:left; line-height:1.8;"> 
                Other useful resources: 
                <a href="https://ai.meta.com/sam2" target="_blank">Official demo</a> from MetaAI, 
                <a href="https://www.youtube.com/watch?v=Dv003fTyO-Y" target="_blank">Video tutorial</a> from Piotr Skalski.
            </div>
            '''
        )

        click_stack = gr.State(({}, {}))
        frame_num = gr.State(value=(int(0)))
        ann_obj_id = gr.State(value=(int(0)))
        last_draw = gr.State(None)

        with gr.Row():
            with gr.Column(scale=0.5):
                with gr.Row():
                    tab_video_input = gr.Tab(label="Video input")
                    with tab_video_input:
                        input_video = gr.Video(label='Input video', type=["mp4", "mov", "avi"], elem_id="input_output_video")
                        with gr.Row():
                            checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
                            scale_slider = gr.Slider(
                                label="Downsampe Frame Rate (fps)",
                                minimum=0.0,
                                maximum=1.0,
                                step=0.25,
                                value=1.0,
                                interactive=True
                            )
                            preprocess_button = gr.Button(
                                value="Preprocess",
                                interactive=True,
                            )

                with gr.Row():
                    tab_stroke = gr.Tab(label="Stroke to Box Prompt")
                    with tab_stroke:
                        drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True)
                        with gr.Row():
                            seg_acc_stroke = gr.Button(value="Segment", interactive=True)
                            
                    tab_click = gr.Tab(label="Point Prompt")
                    with tab_click:
                        input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550)
                        with gr.Row():
                            point_mode = gr.Radio(
                                        choices=["Positive",  "Negative"],
                                        value="Positive",
                                        label="Point Prompt",
                                        interactive=True)
                            
                with gr.Row():
                    with gr.Column():
                        frame_per = gr.Slider(
                            label = "Time (seconds)",
                            minimum= 0.0,
                            maximum= 100.0,
                            step=0.01,
                            value=0.0,
                        )
                        new_object_button = gr.Button(
                            value="Add New Object", 
                            interactive=True
                        )
                        track_for_video = gr.Button(
                            value="Start Tracking",
                                interactive=True,
                                )
                        reset_button = gr.Button(
                            value="Reset",
                            interactive=True,
                        )

            with gr.Column(scale=0.5):
                output_video = gr.Video(label='Visualize Results', elem_id="input_output_video")
                output_mp4 = gr.File(label="Predicted video")
                output_mask = gr.File(label="Predicted masks")

        with gr.Tab(label='Video examples'):
            gr.Examples(
                label="",
                examples=[
                    "assets/12fps_Dancing_cells_trimmed.mp4",
                    "assets/clip_012251_fps5_07_25.mp4",
                    "assets/FLARE22_Tr_0004.mp4",
                    "assets/c_elegans_mov_cut_fps12.mp4",
                ],
                inputs=[input_video],
            )
            gr.Examples(
                label="",
                examples=[
                    "assets/12fps_volvox_microcystis_play_trimmed.mp4",
                    "assets/12fps_macrophages_phagocytosis.mp4",
                    "assets/12fps_worm_eats_organism_5.mp4",
                    "assets/12fps_worm_eats_organism_6.mp4",
                    "assets/12fps_02_cups.mp4",
                ],
                inputs=[input_video],
            )
        gr.Markdown(
            '''
            <div style="text-align:center; margin-top: 20px;">
                The authors of this work highly appreciate Meta AI for making SAM2 publicly available to the community. 
                The interface was built on <a href="https://github.com/z-x-yang/Segment-and-Track-Anything/blob/main/tutorial/tutorial%20for%20WebUI-1.0-Version.md" target="_blank">SegTracker</a>, which is also an amazing tool for video segmentation tracking. 
                <a href="https://docs.google.com/document/d/1idDBV0faOjdjVs-iAHr0uSrw_9_ZzLGrUI2FEdK-lso/edit?usp=sharing" target="_blank">Data source</a>
            </div>
                '''
        )

    ##########################################################
    ######################  back-end #########################
    ##########################################################

        # listen to the preprocess button click to get the first frame of video with scaling
        preprocess_button.click(
            fn=handle_get_meta_from_video,
            inputs=[
                session_id,
                input_video,
                scale_slider,
                checkpoint
            ],
            outputs=[
                input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
            ]
        )

        frame_per.release(
            fn=handle_show_res_by_slider, 
            inputs=[
                session_id, frame_per, click_stack
                ], 
            outputs=[
                input_first_frame, drawing_board, frame_num
            ]
        )

        # Interactively modify the mask acc click
        input_first_frame.select(
            fn=handle_sam_click,
            inputs=[
                session_id, frame_num, point_mode, click_stack, ann_obj_id
            ],
            outputs=[
                input_first_frame, drawing_board, click_stack
            ]
        )

        # Track object in video
        track_for_video.click(
            fn=handle_tracking_objects,
            inputs=[
                session_id,
                frame_num,
                input_video,
            ],
            outputs=[
                input_first_frame,
                drawing_board,
                output_video,
                output_mp4,
                output_mask
            ]
        )

        reset_button.click(
            fn=handle_reset,
            inputs=[session_id],
            outputs=[
                click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
            ]
        )

        new_object_button.click(
            fn=handle_increment_ann_obj_id, 
            inputs=[
                session_id, ann_obj_id
                ], 
            outputs=[
                ann_obj_id
                ]
        )

        tab_stroke.select(
            fn=handle_drawing_board_get_input_first_frame,
            inputs=[session_id, input_first_frame],
            outputs=[drawing_board,],
        )

        seg_acc_stroke.click(
            fn=handle_sam_stroke,
            inputs=[
                session_id, drawing_board, last_draw, frame_num, ann_obj_id
            ],
            outputs=[
                input_first_frame, drawing_board, last_draw
            ]
        )

        input_video.change(
            fn=handle_extract_video_info,
            inputs=[session_id, input_video],
            outputs=[scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask]
        )
        
    app.queue(concurrency_count=1)
    app.launch(debug=True, enable_queue=True, share=False, server_name="0.0.0.0", server_port=7869)

if __name__ == "__main__":
    mp.set_start_method("spawn")
    monitor_thread = threading.Thread(target=monitor_and_cleanup_processes)
    monitor_thread.daemon = True
    monitor_thread.start()
    seg_track_app()