Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
from fairseq.models.transformer import ( | |
TransformerDecoder, | |
TransformerEncoder, | |
TransformerModel, | |
) | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
def ensemble_encoder(func): | |
def wrapper(self, *args, **kwargs): | |
if self.ensemble_models is None or len(self.ensemble_models) == 1: | |
return func(self, *args, **kwargs) | |
encoder_outs = [ | |
func(model, *args, **kwargs, return_all_hiddens=True) | |
for model in self.ensemble_models | |
] | |
_encoder_out = encoder_outs[0].copy() | |
def stack(key): | |
outs = [e[key][0] for e in encoder_outs] | |
return [torch.stack(outs, -1) if outs[0] is not None else None] | |
_encoder_out["encoder_out"] = stack("encoder_out") | |
_encoder_out["encoder_embedding"] = stack("encoder_embedding") | |
num_layers = len(_encoder_out["encoder_states"]) | |
if num_layers > 0: | |
_encoder_out["encoder_states"] = [ | |
torch.stack([e["encoder_states"][i] for e in encoder_outs], -1) | |
for i in range(num_layers) | |
] | |
return _encoder_out | |
return wrapper | |
def ensemble_decoder(func): | |
def wrapper(self, normalize=False, encoder_out=None, *args, **kwargs): | |
if self.ensemble_models is None or len(self.ensemble_models) == 1: | |
return func( | |
self, normalize=normalize, encoder_out=encoder_out, *args, **kwargs | |
) | |
def _replace(encoder_out, new_val): | |
new_encoder_out = encoder_out.copy() | |
new_encoder_out["encoder_out"] = [new_val] | |
return new_encoder_out | |
action_outs = [ | |
func( | |
model, | |
normalize=normalize, | |
encoder_out=_replace( | |
encoder_out, encoder_out["encoder_out"][0][:, :, :, i] | |
), | |
*args, | |
**kwargs | |
) | |
for i, model in enumerate(self.ensemble_models) | |
] | |
if not isinstance(action_outs[0], tuple): # return multiple values | |
action_outs = [[a] for a in action_outs] | |
else: | |
action_outs = [list(a) for a in action_outs] | |
ensembled_outs = [] | |
for i in range(len(action_outs[0])): | |
if i == 0 and normalize: | |
ensembled_outs += [ | |
torch.logsumexp( | |
torch.stack([a[i] for a in action_outs], -1), dim=-1 | |
) | |
- math.log(len(self.ensemble_models)) | |
] | |
elif action_outs[0][i] is not None: | |
ensembled_outs += [torch.stack([a[i] for a in action_outs], -1)] | |
else: | |
ensembled_outs += [None] | |
if len(ensembled_outs) == 1: | |
return ensembled_outs[0] | |
return tuple(ensembled_outs) | |
return wrapper | |
class FairseqNATModel(TransformerModel): | |
""" | |
Abstract class for all nonautoregressive-based models | |
""" | |
def __init__(self, args, encoder, decoder): | |
super().__init__(args, encoder, decoder) | |
self.tgt_dict = decoder.dictionary | |
self.bos = decoder.dictionary.bos() | |
self.eos = decoder.dictionary.eos() | |
self.pad = decoder.dictionary.pad() | |
self.unk = decoder.dictionary.unk() | |
self.ensemble_models = None | |
def allow_length_beam(self): | |
return False | |
def allow_ensemble(self): | |
return True | |
def enable_ensemble(self, models): | |
self.encoder.ensemble_models = [m.encoder for m in models] | |
self.decoder.ensemble_models = [m.decoder for m in models] | |
def add_args(parser): | |
TransformerModel.add_args(parser) | |
parser.add_argument( | |
"--apply-bert-init", | |
action="store_true", | |
help="use custom param initialization for BERT", | |
) | |
def build_decoder(cls, args, tgt_dict, embed_tokens): | |
decoder = FairseqNATDecoder(args, tgt_dict, embed_tokens) | |
if getattr(args, "apply_bert_init", False): | |
decoder.apply(init_bert_params) | |
return decoder | |
def build_encoder(cls, args, src_dict, embed_tokens): | |
encoder = FairseqNATEncoder(args, src_dict, embed_tokens) | |
if getattr(args, "apply_bert_init", False): | |
encoder.apply(init_bert_params) | |
return encoder | |
def forward_encoder(self, encoder_inputs): | |
return self.encoder(*encoder_inputs) | |
def forward_decoder(self, *args, **kwargs): | |
return NotImplementedError | |
def initialize_output_tokens(self, *args, **kwargs): | |
return NotImplementedError | |
def forward(self, *args, **kwargs): | |
return NotImplementedError | |
class FairseqNATEncoder(TransformerEncoder): | |
def __init__(self, args, dictionary, embed_tokens): | |
super().__init__(args, dictionary, embed_tokens) | |
self.ensemble_models = None | |
def forward(self, *args, **kwargs): | |
return super().forward(*args, **kwargs) | |
class FairseqNATDecoder(TransformerDecoder): | |
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): | |
super().__init__(args, dictionary, embed_tokens, no_encoder_attn) | |
self.ensemble_models = None | |