TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import math
from argparse import Namespace
from pathlib import Path
from typing import List
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.data import Dictionary
from fairseq.data.audio.data_cfg import MultitaskConfig, S2SDataConfig
from fairseq.data.audio.speech_to_speech_dataset import SpeechToSpeechDatasetCreator
from fairseq.data.audio.speech_to_text_dataset import (
SpeechToTextDataset,
TextTargetMultitaskData,
)
from fairseq.tasks import LegacyFairseqTask, register_task
from fairseq.tasks.speech_to_text import DummyMultiTask
from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion
logger = logging.getLogger(__name__)
class StackUnitSequenceGenerator(nn.Module):
def __init__(self, tgt_dict, vocab_size):
super().__init__()
self.pad = tgt_dict.pad()
self.eos = tgt_dict.eos()
self.unk = tgt_dict.unk()
self.offset = len(tgt_dict) - vocab_size
self.vocab_size = vocab_size
def pack_units(self, input: torch.Tensor, n_frames_per_step) -> torch.Tensor:
if n_frames_per_step <= 1:
return input
bsz, _, n = input.shape
assert n == n_frames_per_step
scale = [
pow(self.vocab_size, n_frames_per_step - 1 - i)
for i in range(n_frames_per_step)
]
scale = torch.LongTensor(scale).squeeze(0).to(input.device)
mask = input >= self.offset
res = ((input - self.offset) * scale * mask).sum(dim=2) + self.offset
return res
@torch.no_grad()
def generate(self, models, sample, **kwargs):
# currently only support viterbi search for stacked units
model = models[0]
model.eval()
max_len = model.max_decoder_positions()
# TODO: incorporate max_len_a and max_len_b
src_tokens = sample["net_input"]["src_tokens"]
src_lengths = sample["net_input"]["src_lengths"]
bsz, src_len, _ = src_tokens.size()
n_frames_per_step = model.decoder.n_frames_per_step
# initialize
encoder_out = model.forward_encoder(
src_tokens, src_lengths, speaker=sample["speaker"]
)
incremental_state = {}
pred_out, attn, scores = [], [], []
finished = src_tokens.new_zeros((bsz,)).bool()
prev_output_tokens = src_lengths.new_zeros((bsz, 1)).long().fill_(self.eos)
for _ in range(max_len):
cur_out, cur_extra = model.forward_decoder(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
)
lprobs = model.get_normalized_probs([cur_out], log_probs=True)
# never select pad, unk
lprobs[:, :, self.pad] = -math.inf
lprobs[:, :, self.unk] = -math.inf
cur_pred_lprob, cur_pred_out = torch.max(lprobs, dim=2)
scores.append(cur_pred_lprob)
pred_out.append(cur_pred_out)
prev_output_tokens = torch.cat(
(
prev_output_tokens,
self.pack_units(
cur_pred_out.view(bsz, 1, n_frames_per_step), n_frames_per_step
),
),
dim=1,
)
attn.append(cur_extra["attn"][0])
cur_finished = torch.any(cur_pred_out.squeeze(1) == self.eos, dim=1)
finished = finished | cur_finished
if finished.sum().item() == bsz:
break
pred_out = torch.cat(pred_out, dim=1).view(bsz, -1)
attn = torch.cat(attn, dim=2)
alignment = attn.max(dim=1)[1]
attn = attn.repeat_interleave(n_frames_per_step, dim=2)
alignment = alignment.repeat_interleave(n_frames_per_step, dim=1)
scores = torch.cat(scores, dim=1)
eos_idx = (pred_out == self.eos).nonzero(as_tuple=True)
out_lens = src_lengths.new_zeros((bsz,)).long().fill_(max_len)
for b, l in zip(eos_idx[0], eos_idx[1]):
out_lens[b] = min(l, out_lens[b])
hypos = [
[
{
"tokens": pred_out[b, :out_len],
"attn": attn[b, :, :out_len],
"alignment": alignment[b, :out_len],
"positional_scores": scores[b, :out_len],
"score": utils.item(scores[b, :out_len].sum().data),
}
]
for b, out_len in zip(range(bsz), out_lens)
]
return hypos
@register_task("speech_to_speech")
class SpeechToSpeechTask(LegacyFairseqTask):
@classmethod
def add_args(cls, parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--multitask-config-yaml",
type=str,
default=None,
help="Configuration YAML filename for the multitasks (under manifest root)",
)
parser.add_argument(
"--max-source-positions",
default=6000,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
parser.add_argument(
"--target-is-code",
action="store_true",
help="set if target is discrete unit instead of spectrogram",
)
parser.add_argument(
"--target-code-size", type=int, default=None, help="# discrete units"
)
parser.add_argument(
"--n-frames-per-step",
type=int,
default=1,
help="# stacked frames, use 0 for reduced discrete unit sequence",
)
parser.add_argument("--eval-inference", action="store_true")
parser.add_argument(
"--eval-args",
type=str,
default="{}",
help='generation args for speech-to-unit model , e.g., \'{"beam": 5, "max_len_a": 1}\', as JSON string',
)
parser.add_argument("--eos-prob-threshold", type=float, default=0.5)
parser.add_argument(
"--mcd-normalize-type",
type=str,
default="targ",
choices=["targ", "pred", "path"],
)
parser.add_argument(
"--vocoder",
type=str,
default="griffin_lim",
choices=["griffin_lim", "hifigan", "code_hifigan"],
)
parser.add_argument("--spec-bwd-max-iter", type=int, default=8)
parser.add_argument(
"--infer-target-lang",
type=str,
default="",
help="target language for inference",
)
def __init__(self, args, tgt_dict, infer_tgt_lang_id=None):
super().__init__(args)
self.tgt_dict = tgt_dict
self.data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml)
self.multitask_tasks = {}
self.tgt_dict_mt = None
self.eos_token_mt = None
if getattr(args, "multitask_config_yaml", None) is not None:
multitask_cfg = MultitaskConfig(
Path(args.data) / args.multitask_config_yaml
)
first_pass_task_idx = multitask_cfg.first_pass_decoder_task_index
for i, (task_name, task_config) in enumerate(
multitask_cfg.get_all_tasks().items()
):
task_obj = DummyMultiTask(
task_config,
task_config.tgt_dict,
first_pass=i == first_pass_task_idx,
)
self.multitask_tasks[task_name] = task_obj
if task_obj.is_first_pass_decoder:
self.tgt_dict_mt = task_obj.target_dictionary
if task_config.prepend_bos_and_append_tgt_lang_tag:
self.eos_token_mt = task_config.eos_token
assert not isinstance(self.eos_token_mt, List)
if not self.eos_token_mt:
raise Warning(
"Please provide eos_token in --multitask-config-yaml to replace eos in sequence generator"
)
self._infer_tgt_lang_id = infer_tgt_lang_id
@classmethod
def setup_task(cls, args, **kwargs):
data_cfg = data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml)
tgt_dict = None
infer_tgt_lang_id = None
if args.target_is_code:
if data_cfg.prepend_tgt_lang_tag_as_bos:
# dictionary with language tags
dict_path = Path(args.data) / data_cfg.vocab_filename
if not dict_path.is_file():
raise FileNotFoundError(
f"Dict has to be provided when setting prepend_tgt_lang_tag_as_bos: true, but dict not found: {dict_path}"
)
tgt_dict = Dictionary.load(dict_path.as_posix())
# target langauge for inference
if args.infer_target_lang != "":
tgt_lang_tag = SpeechToTextDataset.LANG_TAG_TEMPLATE.format(
args.infer_target_lang
)
infer_tgt_lang_id = tgt_dict.index(tgt_lang_tag)
assert infer_tgt_lang_id != tgt_dict.unk()
else:
assert args.target_code_size is not None
tgt_dict = Dictionary()
for i in range(args.target_code_size):
tgt_dict.add_symbol(str(i))
logger.info(f"dictionary size: " f"{len(tgt_dict):,}")
if getattr(args, "train_subset", None) is not None:
if not all(s.startswith("train") for s in args.train_subset.split(",")):
raise ValueError('Train splits should be named like "train*".')
assert args.n_frames_per_step >= 1
assert (
not args.eval_inference
or (args.target_is_code and args.vocoder == "code_hifigan")
or (not args.target_is_code and args.vocoder != "code_hifigan")
)
return cls(args, tgt_dict, infer_tgt_lang_id=infer_tgt_lang_id)
def build_criterion(self, args):
from fairseq import criterions
if len(self.multitask_tasks) > 0:
if self.args.target_is_code and not args._name.startswith("speech_to_unit"):
raise ValueError(
"set --criterion speech_to_unit for speech-to-unit loss with multitask"
)
elif not self.args.target_is_code and not args._name.startswith(
"speech_to_spectrogram"
):
raise ValueError(
"set --criterion speech_to_spectrogram for speech-to-spectrogram loss with multitask"
)
return criterions.build_criterion(args, self)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
self.datasets[split] = SpeechToSpeechDatasetCreator.from_tsv(
root=self.args.data,
data_cfg=self.data_cfg,
splits=split,
is_train_split=split.startswith("train"),
epoch=epoch,
seed=self.args.seed,
target_is_code=self.args.target_is_code,
tgt_dict=self.target_dictionary,
n_frames_per_step=self.args.n_frames_per_step,
multitask=self.multitask_tasks,
)
@property
def target_dictionary(self):
return self.tgt_dict
@property
def target_dictionary_mt(self):
return self.tgt_dict_mt
@property
def source_dictionary(self):
return None
def max_positions(self):
return self.args.max_source_positions, self.args.max_target_positions
def build_model(self, args, from_checkpoint=False):
args.input_feat_per_channel = self.data_cfg.input_feat_per_channel
args.input_channels = self.data_cfg.input_transformed_channels
args.target_speaker_embed = self.data_cfg.target_speaker_embed is not None
args.n_frames_per_step = self.args.n_frames_per_step
model = super().build_model(args, from_checkpoint)
if len(self.multitask_tasks) > 0:
from fairseq.models.speech_to_speech.s2s_transformer import (
S2STransformerMultitaskModelBase,
)
assert isinstance(model, S2STransformerMultitaskModelBase)
if self.args.eval_inference:
self.eval_gen_args = json.loads(self.args.eval_args)
self.generator = self.build_generator(
[model], Namespace(**self.eval_gen_args)
)
return model
def build_generator_dual_decoder(
self,
models,
args,
extra_gen_cls_kwargs=None,
):
from examples.speech_to_speech.unity.sequence_generator_multi_decoder import (
MultiDecoderSequenceGenerator,
)
return MultiDecoderSequenceGenerator(
models,
self.target_dictionary,
self.target_dictionary_mt,
beam_size=max(1, getattr(args, "beam", 1)),
beam_size_mt=max(1, getattr(args, "beam_mt", 1)),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
max_len_a_mt=getattr(args, "max_len_a_mt", 0),
max_len_b_mt=getattr(args, "max_len_b_mt", 200),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
**extra_gen_cls_kwargs,
)
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
if not self.args.target_is_code or self.args.eval_inference:
from fairseq.models.text_to_speech.vocoder import get_vocoder
self.vocoder = get_vocoder(self.args, self.data_cfg)
self.vocoder = (
self.vocoder.cuda()
if torch.cuda.is_available() and not self.args.cpu
else self.vocoder.cpu()
)
has_dual_decoder = getattr(models[0], "mt_task_name", None) is not None
if self.args.target_is_code:
if self.args.n_frames_per_step == 1:
if has_dual_decoder:
seq_generator = self.build_generator_dual_decoder(
models,
args,
extra_gen_cls_kwargs=extra_gen_cls_kwargs,
)
else:
seq_generator = super().build_generator(
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=extra_gen_cls_kwargs,
)
else:
assert (
getattr(args, "beam", 1) == 1 and getattr(args, "nbest", 1) == 1
), "only support viterbi search for stacked units"
seq_generator = StackUnitSequenceGenerator(
self.tgt_dict,
self.args.target_code_size,
)
else:
if has_dual_decoder:
if getattr(args, "teacher_forcing", False):
raise NotImplementedError
else:
from fairseq.speech_generator import MultiDecoderSpeechGenerator
generator = MultiDecoderSpeechGenerator
lang_token_ids_aux = {
i
for s, i in self.tgt_dict_mt.indices.items()
if TextTargetMultitaskData.is_lang_tag(s)
}
if extra_gen_cls_kwargs is None:
extra_gen_cls_kwargs = {}
extra_gen_cls_kwargs[
"symbols_to_strip_from_output"
] = lang_token_ids_aux
eos_id_mt = (
self.tgt_dict_mt.index(self.eos_token_mt)
if self.eos_token_mt
else None
)
assert eos_id_mt != self.tgt_dict_mt.unk()
extra_gen_cls_kwargs["eos_mt"] = eos_id_mt
seq_generator = generator(
models,
args,
self.vocoder,
self.data_cfg,
self.target_dictionary_mt,
max_iter=self.args.max_target_positions,
eos_prob_threshold=self.args.eos_prob_threshold,
**extra_gen_cls_kwargs,
)
else:
if getattr(args, "teacher_forcing", False):
from fairseq.speech_generator import (
TeacherForcingAutoRegressiveSpeechGenerator,
)
generator = TeacherForcingAutoRegressiveSpeechGenerator
logger.info("Teacher forcing mode for generation")
else:
from fairseq.speech_generator import AutoRegressiveSpeechGenerator
generator = AutoRegressiveSpeechGenerator
seq_generator = generator(
models[0],
self.vocoder,
self.data_cfg,
max_iter=self.args.max_target_positions,
eos_prob_threshold=self.args.eos_prob_threshold,
)
return seq_generator
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
for task_name, task_obj in self.multitask_tasks.items():
criterion.set_multitask_loss_weight(
task_name, task_obj.args.get_loss_weight(update_num)
)
if task_name in model.multitask_decoders:
model.multitask_decoders[task_name].train()
loss, sample_size, logging_output = super().train_step(
sample, model, criterion, optimizer, update_num, ignore_grad
)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
for task_name in self.multitask_tasks.keys():
if task_name in model.multitask_decoders:
model.multitask_decoders[task_name].eval()
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.args.eval_inference:
hypos, inference_losses = self.valid_step_with_inference(
sample, model, self.generator
)
for k, v in inference_losses.items():
assert k not in logging_output
logging_output[k] = v
return loss, sample_size, logging_output
def valid_step_with_inference(self, sample, model, generator):
if self.args.target_is_code:
hypos = generator.generate([model], sample)
tgt_lens = (
sample["target_lengths"] - 1
) * self.args.n_frames_per_step # strip <eos>
for b, (f, l) in enumerate(zip(sample["target"], tgt_lens)):
hypos[b][0]["targ_waveform"] = self.vocoder(
{"code": f[:l] - 4}, # remove <bos>, <pad>, <eos>, <unk>
dur_prediction=self.eval_gen_args.get("dur_prediction", False),
)
if len(hypos[b][0]["tokens"]) > 0:
hypos[b][0]["waveform"] = self.vocoder(
{"code": hypos[b][0]["tokens"] - 4},
dur_prediction=self.eval_gen_args.get("dur_prediction", False),
)
else:
hypos[b][0]["waveform"] = torch.flip(
hypos[b][0]["targ_waveform"], dims=[0]
)
else:
hypos = [
[hypo] for hypo in generator.generate(model, sample, has_targ=True)
]
losses = {
"mcd_loss": 0.0,
"targ_frames": 0.0,
"pred_frames": 0.0,
"path_frames": 0.0,
"nins": 0.0,
"ndel": 0.0,
}
rets = batch_mel_cepstral_distortion(
[hypo[0]["targ_waveform"] for hypo in hypos],
[hypo[0]["waveform"] for hypo in hypos],
self.data_cfg.output_sample_rate,
normalize_type=None,
)
for d, extra in rets:
pathmap = extra[-1]
losses["mcd_loss"] += d.item()
losses["targ_frames"] += pathmap.size(0)
losses["pred_frames"] += pathmap.size(1)
losses["path_frames"] += pathmap.sum().item()
losses["nins"] += (pathmap.sum(dim=1) - 1).sum().item()
losses["ndel"] += (pathmap.sum(dim=0) - 1).sum().item()
losses["norm_frames"] = losses[
f"{getattr(self.args, 'mcd_normalize_type', 'targ')}_frames"
]
return hypos, losses
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
if self._infer_tgt_lang_id is not None:
return generator.generate(
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
bos_token=self._infer_tgt_lang_id,
)
else:
return super().inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)