TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import os.path as op
import torch
import torch.nn.functional as F
import numpy as np
from fairseq.data.audio.text_to_speech_dataset import TextToSpeechDatasetCreator
from fairseq.tasks import register_task
from fairseq.tasks.speech_to_text import SpeechToTextTask
from fairseq.speech_generator import (
AutoRegressiveSpeechGenerator,
NonAutoregressiveSpeechGenerator,
TeacherForcingAutoRegressiveSpeechGenerator,
)
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
try:
from tensorboardX import SummaryWriter
except ImportError:
logger.info("Please install tensorboardX: pip install tensorboardX")
SummaryWriter = None
@register_task("text_to_speech")
class TextToSpeechTask(SpeechToTextTask):
@staticmethod
def add_args(parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--max-source-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1200,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
parser.add_argument("--n-frames-per-step", type=int, default=1)
parser.add_argument("--eos-prob-threshold", type=float, default=0.5)
parser.add_argument("--eval-inference", action="store_true")
parser.add_argument("--eval-tb-nsample", type=int, default=8)
parser.add_argument("--vocoder", type=str, default="griffin_lim")
parser.add_argument("--spec-bwd-max-iter", type=int, default=8)
def __init__(self, args, src_dict):
super().__init__(args, src_dict)
self.src_dict = src_dict
self.sr = self.data_cfg.config.get("features").get("sample_rate")
self.tensorboard_writer = None
self.tensorboard_dir = ""
if args.tensorboard_logdir and SummaryWriter is not None:
self.tensorboard_dir = os.path.join(args.tensorboard_logdir, "valid_extra")
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
is_train_split = split.startswith("train")
pre_tokenizer = self.build_tokenizer(self.args)
bpe_tokenizer = self.build_bpe(self.args)
self.datasets[split] = TextToSpeechDatasetCreator.from_tsv(
self.args.data,
self.data_cfg,
split,
self.src_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split=is_train_split,
epoch=epoch,
seed=self.args.seed,
n_frames_per_step=self.args.n_frames_per_step,
speaker_to_id=self.speaker_to_id,
)
@property
def target_dictionary(self):
return None
@property
def source_dictionary(self):
return self.src_dict
def get_speaker_embeddings_path(self):
speaker_emb_path = None
if self.data_cfg.config.get("speaker_emb_filename") is not None:
speaker_emb_path = op.join(
self.args.data, self.data_cfg.config.get("speaker_emb_filename")
)
return speaker_emb_path
@classmethod
def get_speaker_embeddings(cls, args):
embed_speaker = None
if args.speaker_to_id is not None:
if args.speaker_emb_path is None:
embed_speaker = torch.nn.Embedding(
len(args.speaker_to_id), args.speaker_embed_dim
)
else:
speaker_emb_mat = np.load(args.speaker_emb_path)
assert speaker_emb_mat.shape[1] == args.speaker_embed_dim
embed_speaker = torch.nn.Embedding.from_pretrained(
torch.from_numpy(speaker_emb_mat),
freeze=True,
)
logger.info(
f"load speaker embeddings from {args.speaker_emb_path}. "
f"train embedding? {embed_speaker.weight.requires_grad}\n"
f"embeddings:\n{speaker_emb_mat}"
)
return embed_speaker
def build_model(self, cfg, from_checkpoint=False):
cfg.pitch_min = self.data_cfg.config["features"].get("pitch_min", None)
cfg.pitch_max = self.data_cfg.config["features"].get("pitch_max", None)
cfg.energy_min = self.data_cfg.config["features"].get("energy_min", None)
cfg.energy_max = self.data_cfg.config["features"].get("energy_max", None)
cfg.speaker_emb_path = self.get_speaker_embeddings_path()
model = super().build_model(cfg, from_checkpoint)
self.generator = None
if getattr(cfg, "eval_inference", False):
self.generator = self.build_generator([model], cfg)
return model
def build_generator(self, models, cfg, vocoder=None, **unused):
if vocoder is None:
vocoder = self.build_default_vocoder()
model = models[0]
if getattr(model, "NON_AUTOREGRESSIVE", False):
return NonAutoregressiveSpeechGenerator(model, vocoder, self.data_cfg)
else:
generator = AutoRegressiveSpeechGenerator
if getattr(cfg, "teacher_forcing", False):
generator = TeacherForcingAutoRegressiveSpeechGenerator
logger.info("Teacher forcing mode for generation")
return generator(
model,
vocoder,
self.data_cfg,
max_iter=self.args.max_target_positions,
eos_prob_threshold=self.args.eos_prob_threshold,
)
def build_default_vocoder(self):
from fairseq.models.text_to_speech.vocoder import get_vocoder
vocoder = get_vocoder(self.args, self.data_cfg)
if torch.cuda.is_available() and not self.args.cpu:
vocoder = vocoder.cuda()
else:
vocoder = vocoder.cpu()
return vocoder
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if getattr(self.args, "eval_inference", False):
hypos, inference_losses = self.valid_step_with_inference(
sample, model, self.generator
)
for k, v in inference_losses.items():
assert k not in logging_output
logging_output[k] = v
picked_id = 0
if self.tensorboard_dir and (sample["id"] == picked_id).any():
self.log_tensorboard(
sample,
hypos[: self.args.eval_tb_nsample],
model._num_updates,
is_na_model=getattr(model, "NON_AUTOREGRESSIVE", False),
)
return loss, sample_size, logging_output
def valid_step_with_inference(self, sample, model, generator):
hypos = generator.generate(model, sample, has_targ=True)
losses = {
"mcd_loss": 0.0,
"targ_frames": 0.0,
"pred_frames": 0.0,
"nins": 0.0,
"ndel": 0.0,
}
rets = batch_mel_cepstral_distortion(
[hypo["targ_waveform"] for hypo in hypos],
[hypo["waveform"] for hypo in hypos],
self.sr,
normalize_type=None,
)
for d, extra in rets:
pathmap = extra[-1]
losses["mcd_loss"] += d.item()
losses["targ_frames"] += pathmap.size(0)
losses["pred_frames"] += pathmap.size(1)
losses["nins"] += (pathmap.sum(dim=1) - 1).sum().item()
losses["ndel"] += (pathmap.sum(dim=0) - 1).sum().item()
return hypos, losses
def log_tensorboard(self, sample, hypos, num_updates, is_na_model=False):
if self.tensorboard_writer is None:
self.tensorboard_writer = SummaryWriter(self.tensorboard_dir)
tb_writer = self.tensorboard_writer
for b in range(len(hypos)):
idx = sample["id"][b]
text = sample["src_texts"][b]
targ = hypos[b]["targ_feature"]
pred = hypos[b]["feature"]
attn = hypos[b]["attn"]
if is_na_model:
data = plot_tts_output(
[targ.transpose(0, 1), pred.transpose(0, 1)],
[f"target (idx={idx})", "output"],
attn,
"alignment",
ret_np=True,
suptitle=text,
)
else:
eos_prob = hypos[b]["eos_prob"]
data = plot_tts_output(
[targ.transpose(0, 1), pred.transpose(0, 1), attn],
[f"target (idx={idx})", "output", "alignment"],
eos_prob,
"eos prob",
ret_np=True,
suptitle=text,
)
tb_writer.add_image(
f"inference_sample_{b}", data, num_updates, dataformats="HWC"
)
if hypos[b]["waveform"] is not None:
targ_wave = hypos[b]["targ_waveform"].detach().cpu().float()
pred_wave = hypos[b]["waveform"].detach().cpu().float()
tb_writer.add_audio(
f"inference_targ_{b}", targ_wave, num_updates, sample_rate=self.sr
)
tb_writer.add_audio(
f"inference_pred_{b}", pred_wave, num_updates, sample_rate=self.sr
)
def save_figure_to_numpy(fig):
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
DEFAULT_V_MIN = np.log(1e-5)
def plot_tts_output(
data_2d,
title_2d,
data_1d,
title_1d,
figsize=(24, 4),
v_min=DEFAULT_V_MIN,
v_max=3,
ret_np=False,
suptitle="",
):
try:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
except ImportError:
raise ImportError("Please install Matplotlib: pip install matplotlib")
data_2d = [
x.detach().cpu().float().numpy() if isinstance(x, torch.Tensor) else x
for x in data_2d
]
fig, axes = plt.subplots(1, len(data_2d) + 1, figsize=figsize)
if suptitle:
fig.suptitle(suptitle[:400]) # capped at 400 chars
axes = [axes] if len(data_2d) == 0 else axes
for ax, x, name in zip(axes, data_2d, title_2d):
ax.set_title(name)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
im = ax.imshow(
x,
origin="lower",
aspect="auto",
vmin=max(x.min(), v_min),
vmax=min(x.max(), v_max),
)
fig.colorbar(im, cax=cax, orientation="vertical")
if isinstance(data_1d, torch.Tensor):
data_1d = data_1d.detach().cpu().numpy()
axes[-1].plot(data_1d)
axes[-1].set_title(title_1d)
plt.tight_layout()
if ret_np:
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close(fig)
return data
def antidiag_indices(offset, min_i=0, max_i=None, min_j=0, max_j=None):
"""
for a (3, 4) matrix with min_i=1, max_i=3, min_j=1, max_j=4, outputs
offset=2 (1, 1),
offset=3 (2, 1), (1, 2)
offset=4 (2, 2), (1, 3)
offset=5 (2, 3)
constraints:
i + j = offset
min_j <= j < max_j
min_i <= offset - j < max_i
"""
if max_i is None:
max_i = offset + 1
if max_j is None:
max_j = offset + 1
min_j = max(min_j, offset - max_i + 1, 0)
max_j = min(max_j, offset - min_i + 1, offset + 1)
j = torch.arange(min_j, max_j)
i = offset - j
return torch.stack([i, j])
def batch_dynamic_time_warping(distance, shapes=None):
"""full batched DTW without any constraints
distance: (batchsize, max_M, max_N) matrix
shapes: (batchsize,) vector specifying (M, N) for each entry
"""
# ptr: 0=left, 1=up-left, 2=up
ptr2dij = {0: (0, -1), 1: (-1, -1), 2: (-1, 0)}
bsz, m, n = distance.size()
cumdist = torch.zeros_like(distance)
backptr = torch.zeros_like(distance).type(torch.int32) - 1
# initialize
cumdist[:, 0, :] = distance[:, 0, :].cumsum(dim=-1)
cumdist[:, :, 0] = distance[:, :, 0].cumsum(dim=-1)
backptr[:, 0, :] = 0
backptr[:, :, 0] = 2
# DP with optimized anti-diagonal parallelization, O(M+N) steps
for offset in range(2, m + n - 1):
ind = antidiag_indices(offset, 1, m, 1, n)
c = torch.stack(
[
cumdist[:, ind[0], ind[1] - 1],
cumdist[:, ind[0] - 1, ind[1] - 1],
cumdist[:, ind[0] - 1, ind[1]],
],
dim=2,
)
v, b = c.min(axis=-1)
backptr[:, ind[0], ind[1]] = b.int()
cumdist[:, ind[0], ind[1]] = v + distance[:, ind[0], ind[1]]
# backtrace
pathmap = torch.zeros_like(backptr)
for b in range(bsz):
i = m - 1 if shapes is None else (shapes[b][0] - 1).item()
j = n - 1 if shapes is None else (shapes[b][1] - 1).item()
dtwpath = [(i, j)]
while (i != 0 or j != 0) and len(dtwpath) < 10000:
assert i >= 0 and j >= 0
di, dj = ptr2dij[backptr[b, i, j].item()]
i, j = i + di, j + dj
dtwpath.append((i, j))
dtwpath = dtwpath[::-1]
indices = torch.from_numpy(np.array(dtwpath))
pathmap[b, indices[:, 0], indices[:, 1]] = 1
return cumdist, backptr, pathmap
def compute_l2_dist(x1, x2):
"""compute an (m, n) L2 distance matrix from (m, d) and (n, d) matrices"""
return torch.cdist(x1.unsqueeze(0), x2.unsqueeze(0), p=2).squeeze(0).pow(2)
def compute_rms_dist(x1, x2):
l2_dist = compute_l2_dist(x1, x2)
return (l2_dist / x1.size(1)).pow(0.5)
def get_divisor(pathmap, normalize_type):
if normalize_type is None:
return 1
elif normalize_type == "len1":
return pathmap.size(0)
elif normalize_type == "len2":
return pathmap.size(1)
elif normalize_type == "path":
return pathmap.sum().item()
else:
raise ValueError(f"normalize_type {normalize_type} not supported")
def batch_compute_distortion(y1, y2, sr, feat_fn, dist_fn, normalize_type):
d, s, x1, x2 = [], [], [], []
for cur_y1, cur_y2 in zip(y1, y2):
assert cur_y1.ndim == 1 and cur_y2.ndim == 1
cur_x1 = feat_fn(cur_y1)
cur_x2 = feat_fn(cur_y2)
x1.append(cur_x1)
x2.append(cur_x2)
cur_d = dist_fn(cur_x1, cur_x2)
d.append(cur_d)
s.append(d[-1].size())
max_m = max(ss[0] for ss in s)
max_n = max(ss[1] for ss in s)
d = torch.stack(
[F.pad(dd, (0, max_n - dd.size(1), 0, max_m - dd.size(0))) for dd in d]
)
s = torch.LongTensor(s).to(d.device)
cumdists, backptrs, pathmaps = batch_dynamic_time_warping(d, s)
rets = []
itr = zip(s, x1, x2, d, cumdists, backptrs, pathmaps)
for (m, n), cur_x1, cur_x2, dist, cumdist, backptr, pathmap in itr:
cumdist = cumdist[:m, :n]
backptr = backptr[:m, :n]
pathmap = pathmap[:m, :n]
divisor = get_divisor(pathmap, normalize_type)
distortion = cumdist[-1, -1] / divisor
ret = distortion, (cur_x1, cur_x2, dist, cumdist, backptr, pathmap)
rets.append(ret)
return rets
def batch_mel_cepstral_distortion(y1, y2, sr, normalize_type="path", mfcc_fn=None):
"""
https://arxiv.org/pdf/2011.03568.pdf
The root mean squared error computed on 13-dimensional MFCC using DTW for
alignment. MFCC features are computed from an 80-channel log-mel
spectrogram using a 50ms Hann window and hop of 12.5ms.
y1: list of waveforms
y2: list of waveforms
sr: sampling rate
"""
try:
import torchaudio
except ImportError:
raise ImportError("Please install torchaudio: pip install torchaudio")
if mfcc_fn is None or mfcc_fn.sample_rate != sr:
melkwargs = {
"n_fft": int(0.05 * sr),
"win_length": int(0.05 * sr),
"hop_length": int(0.0125 * sr),
"f_min": 20,
"n_mels": 80,
"window_fn": torch.hann_window,
}
mfcc_fn = torchaudio.transforms.MFCC(
sr, n_mfcc=13, log_mels=True, melkwargs=melkwargs
).to(y1[0].device)
return batch_compute_distortion(
y1,
y2,
sr,
lambda y: mfcc_fn(y).transpose(-1, -2),
compute_rms_dist,
normalize_type,
)