TomatoCocotree
更新server.py
ef707e4
import argparse
import base64
import gc
import hashlib
import os
import secrets
import sys
import time
import unicodedata
from functools import wraps
from io import BytesIO
from random import randint
import markdown
import torch
import webuiapi
from colorama import Fore, Style
from colorama import init as colorama_init
from flask import (Flask, Response, abort, jsonify, render_template_string,
request, send_file, send_from_directory)
from flask_compress import Compress
from flask_cors import CORS
from PIL import Image
from transformers import (AutoModelForCausalLM, AutoModelForSeq2SeqLM,
AutoProcessor, AutoTokenizer,
BlipForConditionalGeneration, pipeline)
from constants import *
colorama_init()
if sys.hexversion < 0x030b0000:
print(f"{Fore.BLUE}{Style.BRIGHT}Python 3.11 or newer is recommended to run this program.{Style.RESET_ALL}")
time.sleep(2)
class SplitArgs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(
namespace, self.dest, values.replace('"', "").replace("'", "").split(",")
)
#Setting Root Folders for Silero Generations so it is compatible with STSL, should not effect regular runs. - Rolyat
parent_dir = os.path.dirname(os.path.abspath(__file__))
SILERO_SAMPLES_PATH = os.path.join(parent_dir, "tts_samples")
SILERO_SAMPLE_TEXT = os.path.join(parent_dir)
# Create directories if they don't exist
if not os.path.exists(SILERO_SAMPLES_PATH):
os.makedirs(SILERO_SAMPLES_PATH)
if not os.path.exists(SILERO_SAMPLE_TEXT):
os.makedirs(SILERO_SAMPLE_TEXT)
# Script arguments
parser = argparse.ArgumentParser(
prog="SillyTavern Extras", description="Web API for transformers models"
)
parser.add_argument(
"--port", type=int, help="Specify the port on which the application is hosted"
)
parser.add_argument(
"--listen", action="store_true", help="Host the app on the local network"
)
parser.add_argument(
"--share", action="store_true", help="Share the app on CloudFlare tunnel"
)
parser.add_argument("--cpu", action="store_true", help="Run the models on the CPU")
parser.add_argument("--cuda", action="store_false", dest="cpu", help="Run the models on the GPU")
parser.add_argument("--cuda-device", help="Specify the CUDA device to use")
parser.add_argument("--mps", "--apple", "--m1", "--m2", action="store_false", dest="cpu", help="Run the models on Apple Silicon")
parser.set_defaults(cpu=True)
parser.add_argument("--summarization-model", help="Load a custom summarization model")
parser.add_argument(
"--classification-model", help="Load a custom text classification model"
)
parser.add_argument("--captioning-model", help="Load a custom captioning model")
parser.add_argument("--embedding-model", help="Load a custom text embedding model")
parser.add_argument("--chroma-host", help="Host IP for a remote ChromaDB instance")
parser.add_argument("--chroma-port", help="HTTP port for a remote ChromaDB instance (defaults to 8000)")
parser.add_argument("--chroma-folder", help="Path for chromadb persistence folder", default='.chroma_db')
parser.add_argument('--chroma-persist', help="ChromaDB persistence", default=True, action=argparse.BooleanOptionalAction)
parser.add_argument(
"--secure", action="store_true", help="Enforces the use of an API key"
)
parser.add_argument("--talkinghead-gpu", action="store_true", help="Run the talkinghead animation on the GPU (CPU is default)")
parser.add_argument("--coqui-gpu", action="store_true", help="Run the voice models on the GPU (CPU is default)")
parser.add_argument("--coqui-models", help="Install given Coqui-api TTS model at launch (comma separated list, last one will be loaded at start)")
parser.add_argument("--max-content-length", help="Set the max")
parser.add_argument("--rvc-save-file", action="store_true", help="Save the last rvc input/output audio file into data/tmp/ folder (for research)")
parser.add_argument("--stt-vosk-model-path", help="Load a custom vosk speech-to-text model")
parser.add_argument("--stt-whisper-model-path", help="Load a custom vosk speech-to-text model")
sd_group = parser.add_mutually_exclusive_group()
local_sd = parser.add_argument_group("sd-local")
local_sd.add_argument("--sd-model", help="Load a custom SD image generation model")
local_sd.add_argument("--sd-cpu", help="Force the SD pipeline to run on the CPU", action="store_true")
remote_sd = parser.add_argument_group("sd-remote")
remote_sd.add_argument(
"--sd-remote", action="store_true", help="Use a remote backend for SD"
)
remote_sd.add_argument(
"--sd-remote-host", type=str, help="Specify the host of the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-port", type=int, help="Specify the port of the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-ssl", action="store_true", help="Use SSL for the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-auth",
type=str,
help="Specify the username:password for the remote SD backend (if required)",
)
parser.add_argument(
"--enable-modules",
action=SplitArgs,
default=[],
help="Override a list of enabled modules",
)
args = parser.parse_args()
# [HF, Huggingface] Set port to 7860, set host to remote.
port = 7860
host = "0.0.0.0"
summarization_model = (
args.summarization_model
if args.summarization_model
else DEFAULT_SUMMARIZATION_MODEL
)
classification_model = (
args.classification_model
if args.classification_model
else DEFAULT_CLASSIFICATION_MODEL
)
captioning_model = (
args.captioning_model if args.captioning_model else DEFAULT_CAPTIONING_MODEL
)
embedding_model = (
args.embedding_model if args.embedding_model else DEFAULT_EMBEDDING_MODEL
)
sd_use_remote = False if args.sd_model else True
sd_model = args.sd_model if args.sd_model else DEFAULT_SD_MODEL
sd_remote_host = args.sd_remote_host if args.sd_remote_host else DEFAULT_REMOTE_SD_HOST
sd_remote_port = args.sd_remote_port if args.sd_remote_port else DEFAULT_REMOTE_SD_PORT
sd_remote_ssl = args.sd_remote_ssl
sd_remote_auth = args.sd_remote_auth
modules = (
args.enable_modules if args.enable_modules and len(args.enable_modules) > 0 else []
)
if len(modules) == 0:
print(
f"{Fore.RED}{Style.BRIGHT}You did not select any modules to run! Choose them by adding an --enable-modules option"
)
print(f"Example: --enable-modules=caption,summarize{Style.RESET_ALL}")
# Models init
cuda_device = DEFAULT_CUDA_DEVICE if not args.cuda_device else args.cuda_device
device_string = cuda_device if torch.cuda.is_available() and not args.cpu else 'mps' if torch.backends.mps.is_available() and not args.cpu else 'cpu'
device = torch.device(device_string)
torch_dtype = torch.float32 if device_string != cuda_device else torch.float16
if not torch.cuda.is_available() and not args.cpu:
print(f"{Fore.YELLOW}{Style.BRIGHT}torch-cuda is not supported on this device.{Style.RESET_ALL}")
if not torch.backends.mps.is_available() and not args.cpu:
print(f"{Fore.YELLOW}{Style.BRIGHT}torch-mps is not supported on this device.{Style.RESET_ALL}")
print(f"{Fore.GREEN}{Style.BRIGHT}Using torch device: {device_string}{Style.RESET_ALL}")
if "talkinghead" in modules:
import sys
import threading
mode = "cuda" if args.talkinghead_gpu else "cpu"
print("Initializing talkinghead pipeline in " + mode + " mode....")
talkinghead_path = os.path.abspath(os.path.join(os.getcwd(), "talkinghead"))
sys.path.append(talkinghead_path) # Add the path to the 'tha3' module to the sys.path list
try:
import talkinghead.tha3.app.app as talkinghead
from talkinghead import *
def launch_talkinghead_gui():
talkinghead.launch_gui(mode, "separable_float")
#choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'],
#choices='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).'
talkinghead_thread = threading.Thread(target=launch_talkinghead_gui)
talkinghead_thread.daemon = True # Set the thread as a daemon thread
talkinghead_thread.start()
except ModuleNotFoundError:
print("Error: Could not import the 'talkinghead' module.")
if "caption" in modules:
print("Initializing an image captioning model...")
captioning_processor = AutoProcessor.from_pretrained(captioning_model)
if "blip" in captioning_model:
captioning_transformer = BlipForConditionalGeneration.from_pretrained(
captioning_model, torch_dtype=torch_dtype
).to(device)
else:
captioning_transformer = AutoModelForCausalLM.from_pretrained(
captioning_model, torch_dtype=torch_dtype
).to(device)
if "summarize" in modules:
print("Initializing a text summarization model...")
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
summarization_model, torch_dtype=torch_dtype
).to(device)
if "sd" in modules and not sd_use_remote:
from diffusers import (EulerAncestralDiscreteScheduler,
StableDiffusionPipeline)
print("Initializing Stable Diffusion pipeline...")
sd_device_string = cuda_device if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
sd_device = torch.device(sd_device_string)
sd_torch_dtype = torch.float32 if sd_device_string != cuda_device else torch.float16
sd_pipe = StableDiffusionPipeline.from_pretrained(
sd_model, custom_pipeline="lpw_stable_diffusion", torch_dtype=sd_torch_dtype
).to(sd_device)
sd_pipe.safety_checker = lambda images, clip_input: (images, False)
sd_pipe.enable_attention_slicing()
# pipe.scheduler = KarrasVeScheduler.from_config(pipe.scheduler.config)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
sd_pipe.scheduler.config
)
elif "sd" in modules and sd_use_remote:
print("Initializing Stable Diffusion connection")
try:
sd_remote = webuiapi.WebUIApi(
host=sd_remote_host, port=sd_remote_port, use_https=sd_remote_ssl
)
if sd_remote_auth:
username, password = sd_remote_auth.split(":")
sd_remote.set_auth(username, password)
sd_remote.util_wait_for_ready()
except Exception as e:
# remote sd from modules
print(
f"{Fore.RED}{Style.BRIGHT}Could not connect to remote SD backend at http{'s' if sd_remote_ssl else ''}://{sd_remote_host}:{sd_remote_port}! Disabling SD module...{Style.RESET_ALL}"
)
modules.remove("sd")
if "tts" in modules:
print("tts module is deprecated. Please use silero-tts instead.")
modules.remove("tts")
modules.append("silero-tts")
if "silero-tts" in modules:
if not os.path.exists(SILERO_SAMPLES_PATH):
os.makedirs(SILERO_SAMPLES_PATH)
print("Initializing Silero TTS server")
from silero_api_server import tts
tts_service = tts.SileroTtsService(SILERO_SAMPLES_PATH)
if len(os.listdir(SILERO_SAMPLES_PATH)) == 0:
print("Generating Silero TTS samples...")
tts_service.update_sample_text(SILERO_SAMPLE_TEXT)
tts_service.generate_samples()
if "edge-tts" in modules:
print("Initializing Edge TTS client")
import tts_edge as edge
if "chromadb" in modules:
print("Initializing ChromaDB")
import chromadb
import posthog
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
# Assume that the user wants in-memory unless a host is specified
# Also disable chromadb telemetry
posthog.capture = lambda *args, **kwargs: None
if args.chroma_host is None:
if args.chroma_persist:
chromadb_client = chromadb.PersistentClient(path=args.chroma_folder, settings=Settings(anonymized_telemetry=False))
print(f"ChromaDB is running in-memory with persistence. Persistence is stored in {args.chroma_folder}. Can be cleared by deleting the folder or purging db.")
else:
chromadb_client = chromadb.EphemeralClient(Settings(anonymized_telemetry=False))
print(f"ChromaDB is running in-memory without persistence.")
else:
chroma_port=(
args.chroma_port if args.chroma_port else DEFAULT_CHROMA_PORT
)
chromadb_client = chromadb.HttpClient(host=args.chroma_host, port=chroma_port, settings=Settings(anonymized_telemetry=False))
print(f"ChromaDB is remotely configured at {args.chroma_host}:{chroma_port}")
chromadb_embedder = SentenceTransformer(embedding_model, device=device_string)
chromadb_embed_fn = lambda *args, **kwargs: chromadb_embedder.encode(*args, **kwargs).tolist()
# Check if the db is connected and running, otherwise tell the user
try:
chromadb_client.heartbeat()
print("Successfully pinged ChromaDB! Your client is successfully connected.")
except:
print("Could not ping ChromaDB! If you are running remotely, please check your host and port!")
# Flask init
app = Flask(__name__)
CORS(app) # allow cross-domain requests
Compress(app) # compress responses
app.config["MAX_CONTENT_LENGTH"] = 500 * 1024 * 1024
max_content_length = (
args.max_content_length
if args.max_content_length
else None)
if max_content_length is not None:
print("Setting MAX_CONTENT_LENGTH to",max_content_length,"Mb")
app.config["MAX_CONTENT_LENGTH"] = int(max_content_length) * 1024 * 1024
if "classify" in modules:
import modules.classify.classify_module as classify_module
classify_module.init_text_emotion_classifier(classification_model, device, torch_dtype)
if "vosk-stt" in modules:
print("Initializing Vosk speech-recognition (from ST request file)")
vosk_model_path = (
args.stt_vosk_model_path
if args.stt_vosk_model_path
else None)
import modules.speech_recognition.vosk_module as vosk_module
vosk_module.model = vosk_module.load_model(file_path=vosk_model_path)
app.add_url_rule("/api/speech-recognition/vosk/process-audio", view_func=vosk_module.process_audio, methods=["POST"])
if "whisper-stt" in modules:
print("Initializing Whisper speech-recognition (from ST request file)")
whisper_model_path = (
args.stt_whisper_model_path
if args.stt_whisper_model_path
else None)
import modules.speech_recognition.whisper_module as whisper_module
whisper_module.model = whisper_module.load_model(file_path=whisper_model_path)
app.add_url_rule("/api/speech-recognition/whisper/process-audio", view_func=whisper_module.process_audio, methods=["POST"])
if "streaming-stt" in modules:
print("Initializing vosk/whisper speech-recognition (from extras server microphone)")
whisper_model_path = (
args.stt_whisper_model_path
if args.stt_whisper_model_path
else None)
import modules.speech_recognition.streaming_module as streaming_module
streaming_module.whisper_model, streaming_module.vosk_model = streaming_module.load_model(file_path=whisper_model_path)
app.add_url_rule("/api/speech-recognition/streaming/record-and-transcript", view_func=streaming_module.record_and_transcript, methods=["POST"])
if "rvc" in modules:
print("Initializing RVC voice conversion (from ST request file)")
print("Increasing server upload limit")
rvc_save_file = (
args.rvc_save_file
if args.rvc_save_file
else False)
if rvc_save_file:
print("RVC saving file option detected, input/output audio will be savec into data/tmp/ folder")
import sys
sys.path.insert(0,'modules/voice_conversion')
import modules.voice_conversion.rvc_module as rvc_module
rvc_module.save_file = rvc_save_file
if "classify" in modules:
rvc_module.classification_mode = True
rvc_module.fix_model_install()
app.add_url_rule("/api/voice-conversion/rvc/get-models-list", view_func=rvc_module.rvc_get_models_list, methods=["POST"])
app.add_url_rule("/api/voice-conversion/rvc/upload-models", view_func=rvc_module.rvc_upload_models, methods=["POST"])
app.add_url_rule("/api/voice-conversion/rvc/process-audio", view_func=rvc_module.rvc_process_audio, methods=["POST"])
if "coqui-tts" in modules:
mode = "GPU" if args.coqui_gpu else "CPU"
print("Initializing Coqui TTS client in " + mode + " mode")
import modules.text_to_speech.coqui.coqui_module as coqui_module
if mode == "GPU":
coqui_module.gpu_mode = True
coqui_models = (
args.coqui_models
if args.coqui_models
else None
)
if coqui_models is not None:
coqui_models = coqui_models.split(",")
for i in coqui_models:
if not coqui_module.install_model(i):
raise ValueError("Coqui model loading failed, most likely a wrong model name in --coqui-models argument, check log above to see which one")
# Coqui-api models
app.add_url_rule("/api/text-to-speech/coqui/coqui-api/check-model-state", view_func=coqui_module.coqui_check_model_state, methods=["POST"])
app.add_url_rule("/api/text-to-speech/coqui/coqui-api/install-model", view_func=coqui_module.coqui_install_model, methods=["POST"])
# Users models
app.add_url_rule("/api/text-to-speech/coqui/local/get-models", view_func=coqui_module.coqui_get_local_models, methods=["POST"])
# Handle both coqui-api/users models
app.add_url_rule("/api/text-to-speech/coqui/generate-tts", view_func=coqui_module.coqui_generate_tts, methods=["POST"])
def require_module(name):
def wrapper(fn):
@wraps(fn)
def decorated_view(*args, **kwargs):
if name not in modules:
abort(403, "Module is disabled by config")
return fn(*args, **kwargs)
return decorated_view
return wrapper
# AI stuff
def classify_text(text: str) -> list:
return classify_module.classify_text_emotion(text)
def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
inputs = captioning_processor(raw_image.convert("RGB"), return_tensors="pt").to(
device, torch_dtype
)
outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
return caption
def summarize_chunks(text: str, params: dict) -> str:
try:
return summarize(text, params)
except IndexError:
print(
"Sequence length too large for model, cutting text in half and calling again"
)
new_params = params.copy()
new_params["max_length"] = new_params["max_length"] // 2
new_params["min_length"] = new_params["min_length"] // 2
return summarize_chunks(
text[: (len(text) // 2)], new_params
) + summarize_chunks(text[(len(text) // 2) :], new_params)
def summarize(text: str, params: dict) -> str:
# Tokenize input
inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
token_count = len(inputs[0])
bad_words_ids = [
summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
for bad_word in params["bad_words"]
]
summary_ids = summarization_transformer.generate(
inputs["input_ids"],
num_beams=2,
max_new_tokens=max(token_count, int(params["max_length"])),
min_new_tokens=min(token_count, int(params["min_length"])),
repetition_penalty=float(params["repetition_penalty"]),
temperature=float(params["temperature"]),
length_penalty=float(params["length_penalty"]),
bad_words_ids=bad_words_ids,
)
summary = summarization_tokenizer.batch_decode(
summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
summary = normalize_string(summary)
return summary
def normalize_string(input: str) -> str:
output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
return output
def generate_image(data: dict) -> Image:
prompt = normalize_string(f'{data["prompt_prefix"]} {data["prompt"]}')
if sd_use_remote:
image = sd_remote.txt2img(
prompt=prompt,
negative_prompt=data["negative_prompt"],
sampler_name=data["sampler"],
steps=data["steps"],
cfg_scale=data["scale"],
width=data["width"],
height=data["height"],
restore_faces=data["restore_faces"],
enable_hr=data["enable_hr"],
save_images=True,
send_images=True,
do_not_save_grid=False,
do_not_save_samples=False,
).image
else:
image = sd_pipe(
prompt=prompt,
negative_prompt=data["negative_prompt"],
num_inference_steps=data["steps"],
guidance_scale=data["scale"],
width=data["width"],
height=data["height"],
).images[0]
image.save("./debug.png")
return image
def image_to_base64(image: Image, quality: int = 75) -> str:
buffer = BytesIO()
image.convert("RGB")
image.save(buffer, format="JPEG", quality=quality)
img_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
return img_str
ignore_auth = []
# [HF, Huggingface] Get password instead of text file.
api_key = os.environ.get("password")
def is_authorize_ignored(request):
view_func = app.view_functions.get(request.endpoint)
if view_func is not None:
if view_func in ignore_auth:
return True
return False
@app.before_request
def before_request():
# Request time measuring
request.start_time = time.time()
# Checks if an API key is present and valid, otherwise return unauthorized
# The options check is required so CORS doesn't get angry
try:
if request.method != 'OPTIONS' and is_authorize_ignored(request) == False and getattr(request.authorization, 'token', '') != api_key:
print(f"WARNING: Unauthorized API key access from {request.remote_addr}")
if request.method == 'POST':
print(f"Incoming POST request with {request.headers.get('Authorization')}")
response = jsonify({ 'error': '401: Invalid API key' })
response.status_code = 401
return "https://(hf_name)-(space_name).hf.space/"
except Exception as e:
print(f"API key check error: {e}")
return "https://(hf_name)-(space_name).hf.space/"
@app.after_request
def after_request(response):
duration = time.time() - request.start_time
response.headers["X-Request-Duration"] = str(duration)
return response
@app.route("/", methods=["GET"])
def index():
with open("./README.md", "r", encoding="utf8") as f:
content = f.read()
return render_template_string(markdown.markdown(content, extensions=["tables"]))
@app.route("/api/extensions", methods=["GET"])
def get_extensions():
extensions = dict(
{
"extensions": [
{
"name": "not-supported",
"metadata": {
"display_name": """<span style="white-space:break-spaces;">Extensions serving using Extensions API is no longer supported. Please update the mod from: <a href="https://github.com/Cohee1207/SillyTavern">https://github.com/Cohee1207/SillyTavern</a></span>""",
"requires": [],
"assets": [],
},
}
]
}
)
return jsonify(extensions)
@app.route("/api/caption", methods=["POST"])
@require_module("caption")
def api_caption():
data = request.get_json()
if "image" not in data or not isinstance(data["image"], str):
abort(400, '"image" is required')
image = Image.open(BytesIO(base64.b64decode(data["image"])))
image = image.convert("RGB")
image.thumbnail((512, 512))
caption = caption_image(image)
thumbnail = image_to_base64(image)
print("Caption:", caption, sep="\n")
gc.collect()
return jsonify({"caption": caption, "thumbnail": thumbnail})
@app.route("/api/summarize", methods=["POST"])
@require_module("summarize")
def api_summarize():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
params = DEFAULT_SUMMARIZE_PARAMS.copy()
if "params" in data and isinstance(data["params"], dict):
params.update(data["params"])
print("Summary input:", data["text"], sep="\n")
summary = summarize_chunks(data["text"], params)
print("Summary output:", summary, sep="\n")
gc.collect()
return jsonify({"summary": summary})
@app.route("/api/classify", methods=["POST"])
@require_module("classify")
def api_classify():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
print("Classification input:", data["text"], sep="\n")
classification = classify_text(data["text"])
print("Classification output:", classification, sep="\n")
gc.collect()
if "talkinghead" in modules: #send emotion to talkinghead
talkinghead.setEmotion(classification)
return jsonify({"classification": classification})
@app.route("/api/classify/labels", methods=["GET"])
@require_module("classify")
def api_classify_labels():
classification = classify_text("")
labels = [x["label"] for x in classification]
if "talkinghead" in modules:
labels.append('talkinghead') # Add 'talkinghead' to the labels list
return jsonify({"labels": labels})
@app.route("/api/talkinghead/load", methods=["POST"])
def live_load():
file = request.files['file']
# convert stream to bytes and pass to talkinghead_load
return talkinghead.talkinghead_load_file(file.stream)
@app.route('/api/talkinghead/unload')
def live_unload():
return talkinghead.unload()
@app.route('/api/talkinghead/start_talking')
def start_talking():
return talkinghead.start_talking()
@app.route('/api/talkinghead/stop_talking')
def stop_talking():
return talkinghead.stop_talking()
@app.route('/api/talkinghead/result_feed')
def result_feed():
return talkinghead.result_feed()
@app.route("/api/image", methods=["POST"])
@require_module("sd")
def api_image():
required_fields = {
"prompt": str,
}
optional_fields = {
"steps": 30,
"scale": 6,
"sampler": "DDIM",
"width": 512,
"height": 512,
"restore_faces": False,
"enable_hr": False,
"prompt_prefix": PROMPT_PREFIX,
"negative_prompt": NEGATIVE_PROMPT,
}
data = request.get_json()
# Check required fields
for field, field_type in required_fields.items():
if field not in data or not isinstance(data[field], field_type):
abort(400, f'"{field}" is required')
# Set optional fields to default values if not provided
for field, default_value in optional_fields.items():
type_match = (
(int, float)
if isinstance(default_value, (int, float))
else type(default_value)
)
if field not in data or not isinstance(data[field], type_match):
data[field] = default_value
try:
print("SD inputs:", data, sep="\n")
image = generate_image(data)
base64image = image_to_base64(image, quality=90)
return jsonify({"image": base64image})
except RuntimeError as e:
abort(400, str(e))
@app.route("/api/image/model", methods=["POST"])
@require_module("sd")
def api_image_model_set():
data = request.get_json()
if not sd_use_remote:
abort(400, "Changing model for local sd is not supported.")
if "model" not in data or not isinstance(data["model"], str):
abort(400, '"model" is required')
old_model = sd_remote.util_get_current_model()
sd_remote.util_set_model(data["model"], find_closest=False)
# sd_remote.util_set_model(data['model'])
sd_remote.util_wait_for_ready()
new_model = sd_remote.util_get_current_model()
return jsonify({"previous_model": old_model, "current_model": new_model})
@app.route("/api/image/model", methods=["GET"])
@require_module("sd")
def api_image_model_get():
model = sd_model
if sd_use_remote:
model = sd_remote.util_get_current_model()
return jsonify({"model": model})
@app.route("/api/image/models", methods=["GET"])
@require_module("sd")
def api_image_models():
models = [sd_model]
if sd_use_remote:
models = sd_remote.util_get_model_names()
return jsonify({"models": models})
@app.route("/api/image/samplers", methods=["GET"])
@require_module("sd")
def api_image_samplers():
samplers = ["Euler a"]
if sd_use_remote:
samplers = [sampler["name"] for sampler in sd_remote.get_samplers()]
return jsonify({"samplers": samplers})
@app.route("/api/modules", methods=["GET"])
def get_modules():
return jsonify({"modules": modules})
@app.route("/api/tts/speakers", methods=["GET"])
@require_module("silero-tts")
def tts_speakers():
voices = [
{
"name": speaker,
"voice_id": speaker,
"preview_url": f"{str(request.url_root)}api/tts/sample/{speaker}",
}
for speaker in tts_service.get_speakers()
]
return jsonify(voices)
# Added fix for Silero not working as new files were unable to be created if one already existed. - Rolyat 7/7/23
@app.route("/api/tts/generate", methods=["POST"])
@require_module("silero-tts")
def tts_generate():
voice = request.get_json()
if "text" not in voice or not isinstance(voice["text"], str):
abort(400, '"text" is required')
if "speaker" not in voice or not isinstance(voice["speaker"], str):
abort(400, '"speaker" is required')
# Remove asterisks
voice["text"] = voice["text"].replace("*", "")
try:
# Remove the destination file if it already exists
if os.path.exists('test.wav'):
os.remove('test.wav')
audio = tts_service.generate(voice["speaker"], voice["text"])
audio_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.basename(audio))
os.rename(audio, audio_file_path)
return send_file(audio_file_path, mimetype="audio/x-wav")
except Exception as e:
print(e)
abort(500, voice["speaker"])
@app.route("/api/tts/sample/<speaker>", methods=["GET"])
@require_module("silero-tts")
def tts_play_sample(speaker: str):
return send_from_directory(SILERO_SAMPLES_PATH, f"{speaker}.wav")
@app.route("/api/edge-tts/list", methods=["GET"])
@require_module("edge-tts")
def edge_tts_list():
voices = edge.get_voices()
return jsonify(voices)
@app.route("/api/edge-tts/generate", methods=["POST"])
@require_module("edge-tts")
def edge_tts_generate():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
if "voice" not in data or not isinstance(data["voice"], str):
abort(400, '"voice" is required')
if "rate" in data and isinstance(data['rate'], int):
rate = data['rate']
else:
rate = 0
# Remove asterisks
data["text"] = data["text"].replace("*", "")
try:
audio = edge.generate_audio(text=data["text"], voice=data["voice"], rate=rate)
return Response(audio, mimetype="audio/mpeg")
except Exception as e:
print(e)
abort(500, data["voice"])
@app.route("/api/chromadb", methods=["POST"])
@require_module("chromadb")
def chromadb_add_messages():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "messages" not in data or not isinstance(data["messages"], list):
abort(400, '"messages" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
documents = [m["content"] for m in data["messages"]]
ids = [m["id"] for m in data["messages"]]
metadatas = [
{"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
for m in data["messages"]
]
collection.upsert(
ids=ids,
documents=documents,
metadatas=metadatas,
)
return jsonify({"count": len(ids)})
@app.route("/api/chromadb/purge", methods=["POST"])
@require_module("chromadb")
def chromadb_purge():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
count = collection.count()
collection.delete()
print("ChromaDB embeddings deleted", count)
return 'Ok', 200
@app.route("/api/chromadb/query", methods=["POST"])
@require_module("chromadb")
def chromadb_query():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "query" not in data or not isinstance(data["query"], str):
abort(400, '"query" is required')
if "n_results" not in data or not isinstance(data["n_results"], int):
n_results = 1
else:
n_results = data["n_results"]
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
if collection.count() == 0:
print(f"Queried empty/missing collection for {repr(data['chat_id'])}.")
return jsonify([])
n_results = min(collection.count(), n_results)
query_result = collection.query(
query_texts=[data["query"]],
n_results=n_results,
)
documents = query_result["documents"][0]
ids = query_result["ids"][0]
metadatas = query_result["metadatas"][0]
distances = query_result["distances"][0]
messages = [
{
"id": ids[i],
"date": metadatas[i]["date"],
"role": metadatas[i]["role"],
"meta": metadatas[i]["meta"],
"content": documents[i],
"distance": distances[i],
}
for i in range(len(ids))
]
return jsonify(messages)
@app.route("/api/chromadb/multiquery", methods=["POST"])
@require_module("chromadb")
def chromadb_multiquery():
data = request.get_json()
if "chat_list" not in data or not isinstance(data["chat_list"], list):
abort(400, '"chat_list" is required and should be a list')
if "query" not in data or not isinstance(data["query"], str):
abort(400, '"query" is required')
if "n_results" not in data or not isinstance(data["n_results"], int):
n_results = 1
else:
n_results = data["n_results"]
messages = []
for chat_id in data["chat_list"]:
if not isinstance(chat_id, str):
continue
try:
chat_id_md5 = hashlib.md5(chat_id.encode()).hexdigest()
collection = chromadb_client.get_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
# Skip this chat if the collection is empty
if collection.count() == 0:
continue
n_results_per_chat = min(collection.count(), n_results)
query_result = collection.query(
query_texts=[data["query"]],
n_results=n_results_per_chat,
)
documents = query_result["documents"][0]
ids = query_result["ids"][0]
metadatas = query_result["metadatas"][0]
distances = query_result["distances"][0]
chat_messages = [
{
"id": ids[i],
"date": metadatas[i]["date"],
"role": metadatas[i]["role"],
"meta": metadatas[i]["meta"],
"content": documents[i],
"distance": distances[i],
}
for i in range(len(ids))
]
messages.extend(chat_messages)
except Exception as e:
print(e)
#remove duplicate msgs, filter down to the right number
seen = set()
messages = [d for d in messages if not (d['content'] in seen or seen.add(d['content']))]
messages = sorted(messages, key=lambda x: x['distance'])[0:n_results]
return jsonify(messages)
@app.route("/api/chromadb/export", methods=["POST"])
@require_module("chromadb")
def chromadb_export():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
try:
collection = chromadb_client.get_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
except Exception as e:
print(e)
abort(400, "Chat collection not found in chromadb")
collection_content = collection.get()
documents = collection_content.get('documents', [])
ids = collection_content.get('ids', [])
metadatas = collection_content.get('metadatas', [])
unsorted_content = [
{
"id": ids[i],
"metadata": metadatas[i],
"document": documents[i],
}
for i in range(len(ids))
]
sorted_content = sorted(unsorted_content, key=lambda x: x['metadata']['date'])
export = {
"chat_id": data["chat_id"],
"content": sorted_content
}
return jsonify(export)
@app.route("/api/chromadb/import", methods=["POST"])
@require_module("chromadb")
def chromadb_import():
data = request.get_json()
content = data['content']
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
documents = [item['document'] for item in content]
metadatas = [item['metadata'] for item in content]
ids = [item['id'] for item in content]
collection.upsert(documents=documents, metadatas=metadatas, ids=ids)
print(f"Imported {len(ids)} (total {collection.count()}) content entries into {repr(data['chat_id'])}")
return jsonify({"count": len(ids)})
if args.share:
import inspect
from flask_cloudflared import _run_cloudflared
sig = inspect.signature(_run_cloudflared)
sum = sum(
1
for param in sig.parameters.values()
if param.kind == param.POSITIONAL_OR_KEYWORD
)
if sum > 1:
metrics_port = randint(8100, 9000)
cloudflare = _run_cloudflared(port, metrics_port)
else:
cloudflare = _run_cloudflared(port)
print(f"{Fore.GREEN}{Style.NORMAL}Running on: {cloudflare}{Style.RESET_ALL}")
ignore_auth.append(tts_play_sample)
ignore_auth.append(result_feed)
app.run(host=host, port=port)