File size: 4,766 Bytes
751d453 df9c952 751d453 df9c952 751d453 f4992e0 751d453 1866296 338d02c 1866296 df9c952 751d453 338d02c df9c952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
from Levenshtein import distance as lev
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class charmatch(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description="Charmatch",
citation="",
inputs_description="input expected output",
# This defines the format of each prediction and reference
features=datasets.Features({
'inputs': datasets.Sequence(datasets.Value('string')),
'expected': datasets.Sequence(datasets.Value('string')),
'outputs': datasets.Sequence(datasets.Value('string'))
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(inputs, expected, outputs):
def get_score(input, expected, output):
print(input, expected, output)
deduped = {input, expected, output}
if len(deduped) == 1:
return 1.0
elif len(deduped) == 2:
if expected == output:
return 1.0
else:
return 0.0
else:
expected_corrections = lev(input, expected)
distance_to_input = lev(input, output)
distance_to_expected = lev(output, expected)
print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
print(f'T: {true_positives}')
precision = true_positives / distance_to_input
recall = true_positives / expected_corrections
f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
print(f'P: {precision}\nR: {recall}')
return f_05
avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100
return {
"fscore": avg
}
|