kedudzic commited on
Commit
ff12245
1 Parent(s): 1866296

update compute

Browse files
Files changed (1) hide show
  1. charmatch.py +23 -28
charmatch.py CHANGED
@@ -71,9 +71,9 @@ class charmatch(evaluate.Metric):
71
  inputs_description="input expected output",
72
  # This defines the format of each prediction and reference
73
  features=datasets.Features({
74
- 'inputs': datasets.Sequence(datasets.Value('string')),
75
- 'expected': datasets.Sequence(datasets.Value('string')),
76
- 'outputs': datasets.Sequence(datasets.Value('string'))
77
  }),
78
  # Homepage of the module for documentation
79
  homepage="http://module.homepage",
@@ -87,35 +87,30 @@ class charmatch(evaluate.Metric):
87
  # TODO: Download external resources if needed
88
  pass
89
 
90
- def _compute(inputs, expected, outputs):
91
- def get_score(input, expected, output):
92
- print(input, expected, output)
93
- deduped = {input, expected, output}
94
- if len(deduped) == 1:
 
 
95
  return 1.0
96
- elif len(deduped) == 2:
97
- if expected == output:
98
- return 1.0
99
- else:
100
- return 0.0
101
  else:
102
- expected_corrections = lev(input, expected)
103
- distance_to_input = lev(input, output)
104
- distance_to_expected = lev(output, expected)
105
- print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
 
 
106
 
107
- true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
108
- print(f'T: {true_positives}')
109
 
110
- precision = true_positives / distance_to_input
111
- recall = true_positives / expected_corrections
112
- f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
113
- print(f'P: {precision}\nR: {recall}')
114
-
115
- return f_05
116
-
117
- avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100
118
 
119
  return {
120
- "fscore": avg
121
  }
 
71
  inputs_description="input expected output",
72
  # This defines the format of each prediction and reference
73
  features=datasets.Features({
74
+ 'input': datasets.Value('string'),
75
+ 'expected': datasets.Value('string'),
76
+ 'output': datasets.Value('string')
77
  }),
78
  # Homepage of the module for documentation
79
  homepage="http://module.homepage",
 
87
  # TODO: Download external resources if needed
88
  pass
89
 
90
+ def _compute(input, expected, output):
91
+ print(input, expected, output)
92
+ deduped = {input, expected, output}
93
+ if len(deduped) == 1:
94
+ return 1.0
95
+ elif len(deduped) == 2:
96
+ if expected == output:
97
  return 1.0
 
 
 
 
 
98
  else:
99
+ return 0.0
100
+ else:
101
+ expected_corrections = lev(input, expected)
102
+ distance_to_input = lev(input, output)
103
+ distance_to_expected = lev(output, expected)
104
+ print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
105
 
106
+ true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
107
+ print(f'T: {true_positives}')
108
 
109
+ precision = true_positives / distance_to_input
110
+ recall = true_positives / expected_corrections
111
+ f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
112
+ print(f'P: {precision}\nR: {recall}')
 
 
 
 
113
 
114
  return {
115
+ "fscore": f_05
116
  }