litellmlope / litellm /llms /bedrock.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
27.8 kB
import json, copy, types
import os
from enum import Enum
import time
from typing import Callable, Optional, Any, Union
import litellm
from litellm.utils import ModelResponse, get_secret, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
import httpx
class BedrockError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://us-west-2.console.aws.amazon.com/bedrock"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AmazonTitanConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1
Supported Params for the Amazon Titan models:
- `maxTokenCount` (integer) max tokens,
- `stopSequences` (string[]) list of stop sequence strings
- `temperature` (float) temperature for model,
- `topP` (int) top p for model
"""
maxTokenCount: Optional[int] = None
stopSequences: Optional[list] = None
temperature: Optional[float] = None
topP: Optional[int] = None
def __init__(
self,
maxTokenCount: Optional[int] = None,
stopSequences: Optional[list] = None,
temperature: Optional[float] = None,
topP: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonAnthropicConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
Supported Params for the Amazon / Anthropic models:
- `max_tokens_to_sample` (integer) max tokens,
- `temperature` (float) model temperature,
- `top_k` (integer) top k,
- `top_p` (integer) top p,
- `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"],
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
"""
max_tokens_to_sample: Optional[int] = litellm.max_tokens
stop_sequences: Optional[list] = None
temperature: Optional[float] = None
top_k: Optional[int] = None
top_p: Optional[int] = None
anthropic_version: Optional[str] = None
def __init__(
self,
max_tokens_to_sample: Optional[int] = None,
stop_sequences: Optional[list] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonCohereConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command
Supported Params for the Amazon / Cohere models:
- `max_tokens` (integer) max tokens,
- `temperature` (float) model temperature,
- `return_likelihood` (string) n/a
"""
max_tokens: Optional[int] = None
temperature: Optional[float] = None
return_likelihood: Optional[str] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
return_likelihood: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonAI21Config:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
Supported Params for the Amazon / AI21 models:
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.
- `frequencyPenalty` (object): Placeholder for frequency penalty object.
- `presencePenalty` (object): Placeholder for presence penalty object.
- `countPenalty` (object): Placeholder for count penalty object.
"""
maxTokens: Optional[int] = None
temperature: Optional[float] = None
topP: Optional[float] = None
stopSequences: Optional[list] = None
frequencePenalty: Optional[dict] = None
presencePenalty: Optional[dict] = None
countPenalty: Optional[dict] = None
def __init__(
self,
maxTokens: Optional[int] = None,
temperature: Optional[float] = None,
topP: Optional[float] = None,
stopSequences: Optional[list] = None,
frequencePenalty: Optional[dict] = None,
presencePenalty: Optional[dict] = None,
countPenalty: Optional[dict] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
class AmazonLlamaConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1
Supported Params for the Amazon / Meta Llama models:
- `max_gen_len` (integer) max tokens,
- `temperature` (float) temperature for model,
- `top_p` (float) top p for model
"""
max_gen_len: Optional[int] = None
temperature: Optional[float] = None
topP: Optional[float] = None
def __init__(
self,
maxTokenCount: Optional[int] = None,
temperature: Optional[float] = None,
topP: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def init_bedrock_client(
region_name=None,
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region_name: Optional[str] = None,
aws_bedrock_runtime_endpoint: Optional[str] = None,
):
# check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
standard_aws_region_name = get_secret("AWS_REGION", None)
## CHECK IS 'os.environ/' passed in
# Define the list of parameters to check
params_to_check = [
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_bedrock_runtime_endpoint,
]
# Iterate over parameters and update if needed
for i, param in enumerate(params_to_check):
if param and param.startswith("os.environ/"):
params_to_check[i] = get_secret(param)
# Assign updated values back to parameters
(
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_bedrock_runtime_endpoint,
) = params_to_check
if region_name:
pass
elif aws_region_name:
region_name = aws_region_name
elif litellm_aws_region_name:
region_name = litellm_aws_region_name
elif standard_aws_region_name:
region_name = standard_aws_region_name
else:
raise BedrockError(
message="AWS region not set: set AWS_REGION_NAME or AWS_REGION env variable or in .env file",
status_code=401,
)
# check for custom AWS_BEDROCK_RUNTIME_ENDPOINT and use it if not passed to init_bedrock_client
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
if aws_bedrock_runtime_endpoint:
endpoint_url = aws_bedrock_runtime_endpoint
elif env_aws_bedrock_runtime_endpoint:
endpoint_url = env_aws_bedrock_runtime_endpoint
else:
endpoint_url = f"https://bedrock-runtime.{region_name}.amazonaws.com"
import boto3
if aws_access_key_id != None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=region_name,
endpoint_url=endpoint_url,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automatically reads env variables
client = boto3.client(
service_name="bedrock-runtime",
region_name=region_name,
endpoint_url=endpoint_url,
)
return client
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
# handle anthropic prompts using anthropic constants
if provider == "anthropic":
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic"
)
else:
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
return prompt
"""
BEDROCK AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
def completion(
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
exception_mapping_worked = False
try:
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
)
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
client = optional_params.pop("aws_bedrock_client", None)
# only init client, if user did not pass one
if client is None:
client = init_bedrock_client(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
)
model = model
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
provider = model.split(".")[0]
prompt = convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
inference_params = copy.deepcopy(optional_params)
stream = inference_params.pop("stream", False)
if provider == "anthropic":
## LOAD CONFIG
config = litellm.AmazonAnthropicConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "ai21":
## LOAD CONFIG
config = litellm.AmazonAI21Config.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "cohere":
## LOAD CONFIG
config = litellm.AmazonCohereConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if optional_params.get("stream", False) == True:
inference_params[
"stream"
] = True # cohere requires stream = True in inference params
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "meta":
## LOAD CONFIG
config = litellm.AmazonLlamaConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "amazon": # amazon titan
## LOAD CONFIG
config = litellm.AmazonTitanConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps(
{
"inputText": prompt,
"textGenerationConfig": inference_params,
}
)
else:
data = json.dumps({})
## COMPLETION CALL
accept = "application/json"
contentType = "application/json"
if stream == True:
if provider == "ai21":
## LOGGING
request_str = f"""
response = client.invoke_model(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
response = response.get("body").read()
return response
else:
## LOGGING
request_str = f"""
response = client.invoke_model_with_response_stream(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model_with_response_stream(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
response = response.get("body")
return response
try:
## LOGGING
request_str = f"""
response = client.invoke_model(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
except client.exceptions.ValidationException as e:
if "The provided model identifier is invalid" in str(e):
raise BedrockError(status_code=404, message=str(e))
raise BedrockError(status_code=400, message=str(e))
except Exception as e:
raise BedrockError(status_code=500, message=str(e))
response_body = json.loads(response.get("body").read())
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=json.dumps(response_body),
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
outputText = "default"
if provider == "ai21":
outputText = response_body.get("completions")[0].get("data").get("text")
elif provider == "anthropic":
outputText = response_body["completion"]
model_response["finish_reason"] = response_body["stop_reason"]
elif provider == "cohere":
outputText = response_body["generations"][0]["text"]
elif provider == "meta":
outputText = response_body["generation"]
else: # amazon titan
outputText = response_body.get("results")[0].get("outputText")
response_metadata = response.get("ResponseMetadata", {})
if response_metadata.get("HTTPStatusCode", 500) >= 400:
raise BedrockError(
message=outputText,
status_code=response_metadata.get("HTTPStatusCode", 500),
)
else:
try:
if len(outputText) > 0:
model_response["choices"][0]["message"]["content"] = outputText
except:
raise BedrockError(
message=json.dumps(outputText),
status_code=response_metadata.get("HTTPStatusCode", 500),
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
except BedrockError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise BedrockError(status_code=500, message=traceback.format_exc())
def _embedding_func_single(
model: str,
input: str,
client: Any,
optional_params=None,
encoding=None,
logging_obj=None,
):
# logic for parsing in - calling - parsing out model embedding calls
## FORMAT EMBEDDING INPUT ##
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
if provider == "amazon":
input = input.replace(os.linesep, " ")
data = {"inputText": input, **inference_params}
# data = json.dumps(data)
elif provider == "cohere":
inference_params["input_type"] = inference_params.get(
"input_type", "search_document"
) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
data = {"texts": [input], **inference_params} # type: ignore
body = json.dumps(data).encode("utf-8")
## LOGGING
request_str = f"""
response = client.invoke_model(
body={body},
modelId={modelId},
accept="*/*",
contentType="application/json",
)""" # type: ignore
logging_obj.pre_call(
input=input,
api_key="", # boto3 is used for init.
additional_args={
"complete_input_dict": {"model": modelId, "texts": input},
"request_str": request_str,
},
)
try:
response = client.invoke_model(
body=body,
modelId=modelId,
accept="*/*",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
## LOGGING
logging_obj.post_call(
input=input,
api_key="",
additional_args={"complete_input_dict": data},
original_response=json.dumps(response_body),
)
if provider == "cohere":
response = response_body.get("embeddings")
# flatten list
response = [item for sublist in response for item in sublist]
return response
elif provider == "amazon":
return response_body.get("embedding")
except Exception as e:
raise BedrockError(
message=f"Embedding Error with model {model}: {e}", status_code=500
)
def embedding(
model: str,
input: Union[list, str],
api_key: Optional[str] = None,
logging_obj=None,
model_response=None,
optional_params=None,
encoding=None,
):
### BOTO3 INIT ###
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
)
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
client = init_bedrock_client(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
)
if type(input) == str:
embeddings = [
_embedding_func_single(
model,
input,
optional_params=optional_params,
client=client,
logging_obj=logging_obj,
)
]
else:
## Embedding Call
embeddings = [
_embedding_func_single(
model,
i,
optional_params=optional_params,
client=client,
logging_obj=logging_obj,
)
for i in input
] # [TODO]: make these parallel calls
## Populate OpenAI compliant dictionary
embedding_response = []
for idx, embedding in enumerate(embeddings):
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding,
}
)
model_response["object"] = "list"
model_response["data"] = embedding_response
model_response["model"] = model
input_tokens = 0
input_str = "".join(input)
input_tokens += len(encoding.encode(input_str))
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens + 0
)
model_response.usage = usage
return model_response