Spaces:
Sleeping
Sleeping
import json, copy, types | |
import os | |
from enum import Enum | |
import time | |
from typing import Callable, Optional, Any, Union | |
import litellm | |
from litellm.utils import ModelResponse, get_secret, Usage | |
from .prompt_templates.factory import prompt_factory, custom_prompt | |
import httpx | |
class BedrockError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", url="https://us-west-2.console.aws.amazon.com/bedrock" | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class AmazonTitanConfig: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1 | |
Supported Params for the Amazon Titan models: | |
- `maxTokenCount` (integer) max tokens, | |
- `stopSequences` (string[]) list of stop sequence strings | |
- `temperature` (float) temperature for model, | |
- `topP` (int) top p for model | |
""" | |
maxTokenCount: Optional[int] = None | |
stopSequences: Optional[list] = None | |
temperature: Optional[float] = None | |
topP: Optional[int] = None | |
def __init__( | |
self, | |
maxTokenCount: Optional[int] = None, | |
stopSequences: Optional[list] = None, | |
temperature: Optional[float] = None, | |
topP: Optional[int] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
class AmazonAnthropicConfig: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude | |
Supported Params for the Amazon / Anthropic models: | |
- `max_tokens_to_sample` (integer) max tokens, | |
- `temperature` (float) model temperature, | |
- `top_k` (integer) top k, | |
- `top_p` (integer) top p, | |
- `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"], | |
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31" | |
""" | |
max_tokens_to_sample: Optional[int] = litellm.max_tokens | |
stop_sequences: Optional[list] = None | |
temperature: Optional[float] = None | |
top_k: Optional[int] = None | |
top_p: Optional[int] = None | |
anthropic_version: Optional[str] = None | |
def __init__( | |
self, | |
max_tokens_to_sample: Optional[int] = None, | |
stop_sequences: Optional[list] = None, | |
temperature: Optional[float] = None, | |
top_k: Optional[int] = None, | |
top_p: Optional[int] = None, | |
anthropic_version: Optional[str] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
class AmazonCohereConfig: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command | |
Supported Params for the Amazon / Cohere models: | |
- `max_tokens` (integer) max tokens, | |
- `temperature` (float) model temperature, | |
- `return_likelihood` (string) n/a | |
""" | |
max_tokens: Optional[int] = None | |
temperature: Optional[float] = None | |
return_likelihood: Optional[str] = None | |
def __init__( | |
self, | |
max_tokens: Optional[int] = None, | |
temperature: Optional[float] = None, | |
return_likelihood: Optional[str] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
class AmazonAI21Config: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra | |
Supported Params for the Amazon / AI21 models: | |
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`. | |
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding. | |
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass. | |
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional. | |
- `frequencyPenalty` (object): Placeholder for frequency penalty object. | |
- `presencePenalty` (object): Placeholder for presence penalty object. | |
- `countPenalty` (object): Placeholder for count penalty object. | |
""" | |
maxTokens: Optional[int] = None | |
temperature: Optional[float] = None | |
topP: Optional[float] = None | |
stopSequences: Optional[list] = None | |
frequencePenalty: Optional[dict] = None | |
presencePenalty: Optional[dict] = None | |
countPenalty: Optional[dict] = None | |
def __init__( | |
self, | |
maxTokens: Optional[int] = None, | |
temperature: Optional[float] = None, | |
topP: Optional[float] = None, | |
stopSequences: Optional[list] = None, | |
frequencePenalty: Optional[dict] = None, | |
presencePenalty: Optional[dict] = None, | |
countPenalty: Optional[dict] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
class AnthropicConstants(Enum): | |
HUMAN_PROMPT = "\n\nHuman: " | |
AI_PROMPT = "\n\nAssistant: " | |
class AmazonLlamaConfig: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1 | |
Supported Params for the Amazon / Meta Llama models: | |
- `max_gen_len` (integer) max tokens, | |
- `temperature` (float) temperature for model, | |
- `top_p` (float) top p for model | |
""" | |
max_gen_len: Optional[int] = None | |
temperature: Optional[float] = None | |
topP: Optional[float] = None | |
def __init__( | |
self, | |
maxTokenCount: Optional[int] = None, | |
temperature: Optional[float] = None, | |
topP: Optional[int] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def init_bedrock_client( | |
region_name=None, | |
aws_access_key_id: Optional[str] = None, | |
aws_secret_access_key: Optional[str] = None, | |
aws_region_name: Optional[str] = None, | |
aws_bedrock_runtime_endpoint: Optional[str] = None, | |
): | |
# check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client | |
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) | |
standard_aws_region_name = get_secret("AWS_REGION", None) | |
## CHECK IS 'os.environ/' passed in | |
# Define the list of parameters to check | |
params_to_check = [ | |
aws_access_key_id, | |
aws_secret_access_key, | |
aws_region_name, | |
aws_bedrock_runtime_endpoint, | |
] | |
# Iterate over parameters and update if needed | |
for i, param in enumerate(params_to_check): | |
if param and param.startswith("os.environ/"): | |
params_to_check[i] = get_secret(param) | |
# Assign updated values back to parameters | |
( | |
aws_access_key_id, | |
aws_secret_access_key, | |
aws_region_name, | |
aws_bedrock_runtime_endpoint, | |
) = params_to_check | |
if region_name: | |
pass | |
elif aws_region_name: | |
region_name = aws_region_name | |
elif litellm_aws_region_name: | |
region_name = litellm_aws_region_name | |
elif standard_aws_region_name: | |
region_name = standard_aws_region_name | |
else: | |
raise BedrockError( | |
message="AWS region not set: set AWS_REGION_NAME or AWS_REGION env variable or in .env file", | |
status_code=401, | |
) | |
# check for custom AWS_BEDROCK_RUNTIME_ENDPOINT and use it if not passed to init_bedrock_client | |
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT") | |
if aws_bedrock_runtime_endpoint: | |
endpoint_url = aws_bedrock_runtime_endpoint | |
elif env_aws_bedrock_runtime_endpoint: | |
endpoint_url = env_aws_bedrock_runtime_endpoint | |
else: | |
endpoint_url = f"https://bedrock-runtime.{region_name}.amazonaws.com" | |
import boto3 | |
if aws_access_key_id != None: | |
# uses auth params passed to completion | |
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
client = boto3.client( | |
service_name="bedrock-runtime", | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
region_name=region_name, | |
endpoint_url=endpoint_url, | |
) | |
else: | |
# aws_access_key_id is None, assume user is trying to auth using env variables | |
# boto3 automatically reads env variables | |
client = boto3.client( | |
service_name="bedrock-runtime", | |
region_name=region_name, | |
endpoint_url=endpoint_url, | |
) | |
return client | |
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict): | |
# handle anthropic prompts using anthropic constants | |
if provider == "anthropic": | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details["roles"], | |
initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
final_prompt_value=model_prompt_details["final_prompt_value"], | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory( | |
model=model, messages=messages, custom_llm_provider="anthropic" | |
) | |
else: | |
prompt = "" | |
for message in messages: | |
if "role" in message: | |
if message["role"] == "user": | |
prompt += f"{message['content']}" | |
else: | |
prompt += f"{message['content']}" | |
else: | |
prompt += f"{message['content']}" | |
return prompt | |
""" | |
BEDROCK AUTH Keys/Vars | |
os.environ['AWS_ACCESS_KEY_ID'] = "" | |
os.environ['AWS_SECRET_ACCESS_KEY'] = "" | |
""" | |
# set os.environ['AWS_REGION_NAME'] = <your-region_name> | |
def completion( | |
model: str, | |
messages: list, | |
custom_prompt_dict: dict, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
exception_mapping_worked = False | |
try: | |
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
aws_bedrock_runtime_endpoint = optional_params.pop( | |
"aws_bedrock_runtime_endpoint", None | |
) | |
# use passed in BedrockRuntime.Client if provided, otherwise create a new one | |
client = optional_params.pop("aws_bedrock_client", None) | |
# only init client, if user did not pass one | |
if client is None: | |
client = init_bedrock_client( | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
aws_region_name=aws_region_name, | |
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint, | |
) | |
model = model | |
modelId = ( | |
optional_params.pop("model_id", None) or model | |
) # default to model if not passed | |
provider = model.split(".")[0] | |
prompt = convert_messages_to_prompt( | |
model, messages, provider, custom_prompt_dict | |
) | |
inference_params = copy.deepcopy(optional_params) | |
stream = inference_params.pop("stream", False) | |
if provider == "anthropic": | |
## LOAD CONFIG | |
config = litellm.AmazonAnthropicConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
data = json.dumps({"prompt": prompt, **inference_params}) | |
elif provider == "ai21": | |
## LOAD CONFIG | |
config = litellm.AmazonAI21Config.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
data = json.dumps({"prompt": prompt, **inference_params}) | |
elif provider == "cohere": | |
## LOAD CONFIG | |
config = litellm.AmazonCohereConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
if optional_params.get("stream", False) == True: | |
inference_params[ | |
"stream" | |
] = True # cohere requires stream = True in inference params | |
data = json.dumps({"prompt": prompt, **inference_params}) | |
elif provider == "meta": | |
## LOAD CONFIG | |
config = litellm.AmazonLlamaConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
data = json.dumps({"prompt": prompt, **inference_params}) | |
elif provider == "amazon": # amazon titan | |
## LOAD CONFIG | |
config = litellm.AmazonTitanConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
data = json.dumps( | |
{ | |
"inputText": prompt, | |
"textGenerationConfig": inference_params, | |
} | |
) | |
else: | |
data = json.dumps({}) | |
## COMPLETION CALL | |
accept = "application/json" | |
contentType = "application/json" | |
if stream == True: | |
if provider == "ai21": | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_model( | |
body={data}, | |
modelId={modelId}, | |
accept=accept, | |
contentType=contentType | |
) | |
""" | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={ | |
"complete_input_dict": data, | |
"request_str": request_str, | |
}, | |
) | |
response = client.invoke_model( | |
body=data, modelId=modelId, accept=accept, contentType=contentType | |
) | |
response = response.get("body").read() | |
return response | |
else: | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_model_with_response_stream( | |
body={data}, | |
modelId={modelId}, | |
accept=accept, | |
contentType=contentType | |
) | |
""" | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={ | |
"complete_input_dict": data, | |
"request_str": request_str, | |
}, | |
) | |
response = client.invoke_model_with_response_stream( | |
body=data, modelId=modelId, accept=accept, contentType=contentType | |
) | |
response = response.get("body") | |
return response | |
try: | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_model( | |
body={data}, | |
modelId={modelId}, | |
accept=accept, | |
contentType=contentType | |
) | |
""" | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={ | |
"complete_input_dict": data, | |
"request_str": request_str, | |
}, | |
) | |
response = client.invoke_model( | |
body=data, modelId=modelId, accept=accept, contentType=contentType | |
) | |
except client.exceptions.ValidationException as e: | |
if "The provided model identifier is invalid" in str(e): | |
raise BedrockError(status_code=404, message=str(e)) | |
raise BedrockError(status_code=400, message=str(e)) | |
except Exception as e: | |
raise BedrockError(status_code=500, message=str(e)) | |
response_body = json.loads(response.get("body").read()) | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key="", | |
original_response=json.dumps(response_body), | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response}") | |
## RESPONSE OBJECT | |
outputText = "default" | |
if provider == "ai21": | |
outputText = response_body.get("completions")[0].get("data").get("text") | |
elif provider == "anthropic": | |
outputText = response_body["completion"] | |
model_response["finish_reason"] = response_body["stop_reason"] | |
elif provider == "cohere": | |
outputText = response_body["generations"][0]["text"] | |
elif provider == "meta": | |
outputText = response_body["generation"] | |
else: # amazon titan | |
outputText = response_body.get("results")[0].get("outputText") | |
response_metadata = response.get("ResponseMetadata", {}) | |
if response_metadata.get("HTTPStatusCode", 500) >= 400: | |
raise BedrockError( | |
message=outputText, | |
status_code=response_metadata.get("HTTPStatusCode", 500), | |
) | |
else: | |
try: | |
if len(outputText) > 0: | |
model_response["choices"][0]["message"]["content"] = outputText | |
except: | |
raise BedrockError( | |
message=json.dumps(outputText), | |
status_code=response_metadata.get("HTTPStatusCode", 500), | |
) | |
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. | |
prompt_tokens = len(encoding.encode(prompt)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response["created"] = int(time.time()) | |
model_response["model"] = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
except BedrockError as e: | |
exception_mapping_worked = True | |
raise e | |
except Exception as e: | |
if exception_mapping_worked: | |
raise e | |
else: | |
import traceback | |
raise BedrockError(status_code=500, message=traceback.format_exc()) | |
def _embedding_func_single( | |
model: str, | |
input: str, | |
client: Any, | |
optional_params=None, | |
encoding=None, | |
logging_obj=None, | |
): | |
# logic for parsing in - calling - parsing out model embedding calls | |
## FORMAT EMBEDDING INPUT ## | |
provider = model.split(".")[0] | |
inference_params = copy.deepcopy(optional_params) | |
inference_params.pop( | |
"user", None | |
) # make sure user is not passed in for bedrock call | |
modelId = ( | |
optional_params.pop("model_id", None) or model | |
) # default to model if not passed | |
if provider == "amazon": | |
input = input.replace(os.linesep, " ") | |
data = {"inputText": input, **inference_params} | |
# data = json.dumps(data) | |
elif provider == "cohere": | |
inference_params["input_type"] = inference_params.get( | |
"input_type", "search_document" | |
) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3 | |
data = {"texts": [input], **inference_params} # type: ignore | |
body = json.dumps(data).encode("utf-8") | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_model( | |
body={body}, | |
modelId={modelId}, | |
accept="*/*", | |
contentType="application/json", | |
)""" # type: ignore | |
logging_obj.pre_call( | |
input=input, | |
api_key="", # boto3 is used for init. | |
additional_args={ | |
"complete_input_dict": {"model": modelId, "texts": input}, | |
"request_str": request_str, | |
}, | |
) | |
try: | |
response = client.invoke_model( | |
body=body, | |
modelId=modelId, | |
accept="*/*", | |
contentType="application/json", | |
) | |
response_body = json.loads(response.get("body").read()) | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key="", | |
additional_args={"complete_input_dict": data}, | |
original_response=json.dumps(response_body), | |
) | |
if provider == "cohere": | |
response = response_body.get("embeddings") | |
# flatten list | |
response = [item for sublist in response for item in sublist] | |
return response | |
elif provider == "amazon": | |
return response_body.get("embedding") | |
except Exception as e: | |
raise BedrockError( | |
message=f"Embedding Error with model {model}: {e}", status_code=500 | |
) | |
def embedding( | |
model: str, | |
input: Union[list, str], | |
api_key: Optional[str] = None, | |
logging_obj=None, | |
model_response=None, | |
optional_params=None, | |
encoding=None, | |
): | |
### BOTO3 INIT ### | |
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
aws_bedrock_runtime_endpoint = optional_params.pop( | |
"aws_bedrock_runtime_endpoint", None | |
) | |
# use passed in BedrockRuntime.Client if provided, otherwise create a new one | |
client = init_bedrock_client( | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
aws_region_name=aws_region_name, | |
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint, | |
) | |
if type(input) == str: | |
embeddings = [ | |
_embedding_func_single( | |
model, | |
input, | |
optional_params=optional_params, | |
client=client, | |
logging_obj=logging_obj, | |
) | |
] | |
else: | |
## Embedding Call | |
embeddings = [ | |
_embedding_func_single( | |
model, | |
i, | |
optional_params=optional_params, | |
client=client, | |
logging_obj=logging_obj, | |
) | |
for i in input | |
] # [TODO]: make these parallel calls | |
## Populate OpenAI compliant dictionary | |
embedding_response = [] | |
for idx, embedding in enumerate(embeddings): | |
embedding_response.append( | |
{ | |
"object": "embedding", | |
"index": idx, | |
"embedding": embedding, | |
} | |
) | |
model_response["object"] = "list" | |
model_response["data"] = embedding_response | |
model_response["model"] = model | |
input_tokens = 0 | |
input_str = "".join(input) | |
input_tokens += len(encoding.encode(input_str)) | |
usage = Usage( | |
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens + 0 | |
) | |
model_response.usage = usage | |
return model_response | |