litellmlope / litellm /proxy /proxy_cli.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
16.4 kB
import click
import subprocess, traceback, json
import os, sys
import random
from datetime import datetime
import importlib
from dotenv import load_dotenv
sys.path.append(os.getcwd())
config_filename = "litellm.secrets"
load_dotenv()
from importlib import resources
import shutil
telemetry = None
def run_ollama_serve():
try:
command = ["ollama", "serve"]
with open(os.devnull, "w") as devnull:
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
except Exception as e:
print(
f"""
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
"""
) # noqa
def is_port_in_use(port):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(("localhost", port)) == 0
@click.command()
@click.option("--host", default="0.0.0.0", help="Host for the server to listen on.")
@click.option("--port", default=8000, help="Port to bind the server to.")
@click.option("--num_workers", default=1, help="Number of gunicorn workers to spin up")
@click.option("--api_base", default=None, help="API base URL.")
@click.option(
"--api_version",
default="2023-07-01-preview",
help="For azure - pass in the api version.",
)
@click.option(
"--model", "-m", default=None, help="The model name to pass to litellm expects"
)
@click.option(
"--alias",
default=None,
help='The alias for the model - use this to give a litellm model name (e.g. "huggingface/codellama/CodeLlama-7b-Instruct-hf") a more user-friendly name ("codellama")',
)
@click.option(
"--add_key", default=None, help="The model name to pass to litellm expects"
)
@click.option("--headers", default=None, help="headers for the API call")
@click.option("--save", is_flag=True, type=bool, help="Save the model-specific config")
@click.option(
"--debug", default=False, is_flag=True, type=bool, help="To debug the input"
)
@click.option(
"--detailed_debug",
default=False,
is_flag=True,
type=bool,
help="To view detailed debug logs",
)
@click.option(
"--use_queue",
default=False,
is_flag=True,
type=bool,
help="To use celery workers for async endpoints",
)
@click.option(
"--temperature", default=None, type=float, help="Set temperature for the model"
)
@click.option(
"--max_tokens", default=None, type=int, help="Set max tokens for the model"
)
@click.option(
"--request_timeout",
default=600,
type=int,
help="Set timeout in seconds for completion calls",
)
@click.option("--drop_params", is_flag=True, help="Drop any unmapped params")
@click.option(
"--add_function_to_prompt",
is_flag=True,
help="If function passed but unsupported, pass it as prompt",
)
@click.option(
"--config",
"-c",
default=None,
help="Path to the proxy configuration file (e.g. config.yaml). Usage `litellm --config config.yaml`",
)
@click.option(
"--max_budget",
default=None,
type=float,
help="Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`",
)
@click.option(
"--telemetry",
default=True,
type=bool,
help="Helps us know if people are using this feature. Turn this off by doing `--telemetry False`",
)
@click.option(
"--version",
"-v",
default=False,
is_flag=True,
type=bool,
help="Print LiteLLM version",
)
@click.option(
"--health",
flag_value=True,
help="Make a chat/completions request to all llms in config.yaml",
)
@click.option(
"--test",
flag_value=True,
help="proxy chat completions url to make a test request to",
)
@click.option(
"--test_async",
default=False,
is_flag=True,
help="Calls async endpoints /queue/requests and /queue/response",
)
@click.option(
"--num_requests",
default=10,
type=int,
help="Number of requests to hit async endpoint with",
)
@click.option("--local", is_flag=True, default=False, help="for local debugging")
def run_server(
host,
port,
api_base,
api_version,
model,
alias,
add_key,
headers,
save,
debug,
detailed_debug,
temperature,
max_tokens,
request_timeout,
drop_params,
add_function_to_prompt,
config,
max_budget,
telemetry,
test,
local,
num_workers,
test_async,
num_requests,
use_queue,
health,
version,
):
global feature_telemetry
args = locals()
if local:
from proxy_server import app, save_worker_config, usage_telemetry
else:
try:
from .proxy_server import app, save_worker_config, usage_telemetry
except ImportError as e:
if "litellm[proxy]" in str(e):
# user is missing a proxy dependency, ask them to pip install litellm[proxy]
raise e
else:
# this is just a local/relative import error, user git cloned litellm
from proxy_server import app, save_worker_config, usage_telemetry
feature_telemetry = usage_telemetry
if version == True:
pkg_version = importlib.metadata.version("litellm")
click.echo(f"\nLiteLLM: Current Version = {pkg_version}\n")
return
if model and "ollama" in model and api_base is None:
run_ollama_serve()
if test_async is True:
import requests, concurrent, time
api_base = f"http://{host}:{port}"
def _make_openai_completion():
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Write a short poem about the moon"}
],
}
response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
response = response.json()
while True:
try:
url = response["url"]
polling_url = f"{api_base}{url}"
polling_response = requests.get(polling_url)
polling_response = polling_response.json()
print("\n RESPONSE FROM POLLING JOB", polling_response)
status = polling_response["status"]
if status == "finished":
llm_response = polling_response["result"]
break
print(
f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}"
) # noqa
time.sleep(0.5)
except Exception as e:
print("got exception in polling", e)
break
# Number of concurrent calls (you can adjust this)
concurrent_calls = num_requests
# List to store the futures of concurrent calls
futures = []
start_time = time.time()
# Make concurrent calls
with concurrent.futures.ThreadPoolExecutor(
max_workers=concurrent_calls
) as executor:
for _ in range(concurrent_calls):
futures.append(executor.submit(_make_openai_completion))
# Wait for all futures to complete
concurrent.futures.wait(futures)
# Summarize the results
successful_calls = 0
failed_calls = 0
for future in futures:
if future.done():
if future.result() is not None:
successful_calls += 1
else:
failed_calls += 1
end_time = time.time()
print(f"Elapsed Time: {end_time-start_time}")
print(f"Load test Summary:")
print(f"Total Requests: {concurrent_calls}")
print(f"Successful Calls: {successful_calls}")
print(f"Failed Calls: {failed_calls}")
return
if health != False:
import requests
print("\nLiteLLM: Health Testing models in config")
response = requests.get(url=f"http://{host}:{port}/health")
print(json.dumps(response.json(), indent=4))
return
if test != False:
request_model = model or "gpt-3.5-turbo"
click.echo(
f"\nLiteLLM: Making a test ChatCompletions request to your proxy. Model={request_model}"
)
import openai
if test == True: # flag value set
api_base = f"http://{host}:{port}"
else:
api_base = test
client = openai.OpenAI(api_key="My API Key", base_url=api_base)
response = client.chat.completions.create(
model=request_model,
messages=[
{
"role": "user",
"content": "this is a test request, write a short poem",
}
],
max_tokens=256,
)
click.echo(f"\nLiteLLM: response from proxy {response}")
print(
f"\n LiteLLM: Making a test ChatCompletions + streaming request to proxy. Model={request_model}"
)
response = client.chat.completions.create(
model=request_model,
messages=[
{
"role": "user",
"content": "this is a test request, write a short poem",
}
],
stream=True,
)
for chunk in response:
click.echo(f"LiteLLM: streaming response from proxy {chunk}")
print("\n making completion request to proxy")
response = client.completions.create(
model=request_model, prompt="this is a test request, write a short poem"
)
print(response)
return
else:
if headers:
headers = json.loads(headers)
save_worker_config(
model=model,
alias=alias,
api_base=api_base,
api_version=api_version,
debug=debug,
detailed_debug=detailed_debug,
temperature=temperature,
max_tokens=max_tokens,
request_timeout=request_timeout,
max_budget=max_budget,
telemetry=telemetry,
drop_params=drop_params,
add_function_to_prompt=add_function_to_prompt,
headers=headers,
save=save,
config=config,
use_queue=use_queue,
)
try:
import uvicorn
if os.name == "nt":
pass
else:
import gunicorn.app.base
except:
raise ImportError(
"Uvicorn, gunicorn needs to be imported. Run - `pip 'litellm[proxy]'`"
)
if config is not None:
"""
Allow user to pass in db url via config
read from there and save it to os.env['DATABASE_URL']
"""
try:
import yaml
except:
raise ImportError(
"yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"
)
if os.path.exists(config):
with open(config, "r") as config_file:
config = yaml.safe_load(config_file)
general_settings = config.get("general_settings", {})
database_url = general_settings.get("database_url", None)
if database_url and database_url.startswith("os.environ/"):
original_dir = os.getcwd()
# set the working directory to where this script is
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path - for litellm local dev
import litellm
database_url = litellm.get_secret(database_url)
os.chdir(original_dir)
if database_url is not None and isinstance(database_url, str):
os.environ["DATABASE_URL"] = database_url
if os.getenv("DATABASE_URL", None) is not None:
try:
subprocess.run(["prisma"], capture_output=True)
is_prisma_runnable = True
except FileNotFoundError:
is_prisma_runnable = False
if is_prisma_runnable:
# run prisma db push, before starting server
# Save the current working directory
original_dir = os.getcwd()
# set the working directory to where this script is
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
try:
subprocess.run(
["prisma", "db", "push", "--accept-data-loss"]
) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
finally:
os.chdir(original_dir)
else:
print(
f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
)
if port == 8000 and is_port_in_use(port):
port = random.randint(1024, 49152)
from litellm.proxy.proxy_server import app
if os.name == "nt":
uvicorn.run(app, host=host, port=port) # run uvicorn
else:
import gunicorn.app.base
# Gunicorn Application Class
class StandaloneApplication(gunicorn.app.base.BaseApplication):
def __init__(self, app, options=None):
self.options = options or {} # gunicorn options
self.application = app # FastAPI app
super().__init__()
_endpoint_str = (
f"curl --location 'http://0.0.0.0:{port}/chat/completions' \\"
)
curl_command = (
_endpoint_str
+ """
--header 'Content-Type: application/json' \\
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
\n
"""
)
print() # noqa
print( # noqa
f'\033[1;34mLiteLLM: Test your local proxy with: "litellm --test" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n'
)
print( # noqa
f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n"
)
print(
"\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n"
) # noqa
print( # noqa
f"\033[1;34mSee all Router/Swagger docs on http://0.0.0.0:{port} \033[0m\n"
) # noqa
def load_config(self):
# note: This Loads the gunicorn config - has nothing to do with LiteLLM Proxy config
config = {
key: value
for key, value in self.options.items()
if key in self.cfg.settings and value is not None
}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
# gunicorn app function
return self.application
gunicorn_options = {
"bind": f"{host}:{port}",
"workers": num_workers, # default is 1
"worker_class": "uvicorn.workers.UvicornWorker",
"preload": True, # Add the preload flag,
"accesslog": "-", # Log to stdout
"access_log_format": '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s',
}
StandaloneApplication(
app=app, options=gunicorn_options
).run() # Run gunicorn
if __name__ == "__main__":
run_server()