Spaces:
Running
A newer version of the Gradio SDK is available:
5.7.0
Examples of Training scripts for Non-autoregressive Machine Translation models
Non-autoregressive Transformer (NAT, Gu et al., 2017)
Note that we need to have an additional module to perform "length prediction" (--length-loss-factor
) before generating the whole sequence.
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch nonautoregressive_transformer \
--noise full_mask \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--pred-length-offset \
--length-loss-factor 0.1 \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000
Fast Structured Decoding for Sequence Models (NAT-CRF, Sun et al., 2019)
Note that we implemented a low-rank appromixated CRF model by setting --crf-lowrank-approx=32
and --crf-beam-approx=64
as discribed in the original paper. All other settings are the same as the vanilla NAT model.
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch nacrf_transformer \
--noise full_mask \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--pred-length-offset \
--length-loss-factor 0.1 \
--word-ins-loss-factor 0.5 \
--crf-lowrank-approx 32 \
--crf-beam-approx 64 \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000
Non-autoregressive Transformer with Iterative Refinement (iNAT, Lee et al., 2018)
Note that --train-step
means how many iterations of refinement we used during training, and --dae-ratio
controls the ratio of denoising auto-encoder training described in the original paper.
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch iterative_nonautoregressive_transformer \
--noise full_mask \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--pred-length-offset \
--length-loss-factor 0.1 \
--train-step 4 \
--dae-ratio 0.5 \
--stochastic-approx \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000
Insertion Transformer (InsT, Stern et al., 2019)
Note that we need to specify the "slot-loss" (uniform or balanced tree) described in the original paper. Here we use --label-tau
to control the temperature.
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch insertion_transformer \
--noise random_delete \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000
Mask Predict (CMLM, Ghazvininejad et al., 2019)
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch cmlm_transformer \
--noise random_mask \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000
Levenshtein Transformer (LevT, Gu et al., 2019)
fairseq-train \
data-bin/wmt14_en_de_distill \
--save-dir checkpoints \
--ddp-backend=legacy_ddp \
--task translation_lev \
--criterion nat_loss \
--arch levenshtein_transformer \
--noise random_delete \
--share-all-embeddings \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr 0.0005 --lr-scheduler inverse_sqrt \
--stop-min-lr '1e-09' --warmup-updates 10000 \
--warmup-init-lr '1e-07' --label-smoothing 0.1 \
--dropout 0.3 --weight-decay 0.01 \
--decoder-learned-pos \
--encoder-learned-pos \
--apply-bert-init \
--log-format 'simple' --log-interval 100 \
--fixed-validation-seed 7 \
--max-tokens 8000 \
--save-interval-updates 10000 \
--max-update 300000