mischeiwiller's picture
Update app.py
e43d011 verified
raw
history blame
3.72 kB
import gradio as gr
import torch
import kornia as K
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.vq import kmeans
from PIL import Image
def get_coordinates_from_mask(mask_in):
x_y = np.where(mask_in != [0,0,0,255])[:2]
x_y = np.column_stack((x_y[1], x_y[0]))
x_y = np.float32(x_y)
centroids,_ = kmeans(x_y,4)
centroids = np.int64(centroids)
return centroids
def get_top_bottom_coordinates(coords):
top_coord = min(coords, key=lambda x : x[1])
bottom_coord = max(coords, key=lambda x : x[1])
return top_coord, bottom_coord
def sort_centroids_clockwise(centroids: np.ndarray):
c_list = centroids.tolist()
c_list.sort(key = lambda y : y[0])
left_coords = c_list[:2]
right_coords = c_list[-2:]
top_left, bottom_left = get_top_bottom_coordinates(left_coords)
top_right, bottom_right = get_top_bottom_coordinates(right_coords)
return top_left, top_right, bottom_right, bottom_left
def infer(image_input, dst_height: str, dst_width: str):
if isinstance(image_input, dict):
image_in = image_input["image"]
mask_in = image_input["mask"]
else:
image_in = image_input
mask_in = np.zeros_like(image_in)
torch_img = K.utils.image_to_tensor(image_in).float() / 255.0
centroids = get_coordinates_from_mask(mask_in)
ordered_src_coords = sort_centroids_clockwise(centroids)
# the source points are the region to crop corners
points_src = torch.tensor([list(ordered_src_coords)], dtype=torch.float32)
# the destination points are the image vertexes
h, w = int(dst_height), int(dst_width) # destination size
points_dst = torch.tensor([[
[0., 0.], [w - 1., 0.], [w - 1., h - 1.], [0., h - 1.],
]], dtype=torch.float32)
# compute perspective transform
M: torch.tensor = K.geometry.transform.get_perspective_transform(points_src, points_dst)
# warp the original image by the found transform
torch_img = torch.stack([torch_img],)
img_warp: torch.tensor = K.geometry.transform.warp_perspective(torch_img, M, dsize=(h, w))
# convert back to numpy
img_np = K.utils.tensor_to_image(torch_img[0])
img_warp_np: np.ndarray = K.utils.tensor_to_image(img_warp[0])
# draw points into original image
for i in range(4):
center = tuple(points_src[0, i].long().numpy())
img_np = cv2.circle(img_np.copy(), center, 5, (0, 255, 0), -1)
# create the plot
fig, axs = plt.subplots(1, 2, figsize=(16, 10))
axs = axs.ravel()
axs[0].axis('off')
axs[0].set_title('image source')
axs[0].imshow(img_np)
axs[1].axis('off')
axs[1].set_title('image destination')
axs[1].imshow(img_warp_np)
return fig
description = """In this space you can warp an image using perspective transform with the Kornia library as seen in [this tutorial](https://kornia.github.io/tutorials/#category=Homography).
1. Upload an image or use the example provided
2. Set 4 points into the image with your cursor, which define the area to warp
3. Set a desired output size (or go with the default)
4. Click Submit to run the demo
"""
# Load the example image
example_image = Image.open("bruce.png")
example_image_np = np.array(example_image)
inputs = [
gr.Image(type="numpy", label="Input Image", tool="sketch"),
gr.Textbox(label="Destination Height", value="64"),
gr.Textbox(label="Destination Width", value="128"),
]
outputs = gr.Plot(label="Output")
gr.Interface(
fn=infer,
inputs=inputs,
outputs=outputs,
title="Homography Warping",
description=description,
examples=[[example_image_np, "64", "128"]],
cache_examples=True
).launch()