laubonghaudoi's picture
Update weights
1436945
raw
history blame
15.3 kB
import logging
import os
import random
import re
import sys
import gradio as gr
import torch
from tools.i18n.i18n import I18nAuto, scan_language_list
from TTS_infer_pack.text_segmentation_method import get_method
from TTS_infer_pack.TTS import TTS, TTS_Config
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
gpt_path = os.environ.get("gpt_path", None)
sovits_path = os.environ.get("sovits_path", None)
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
bert_path = os.environ.get("bert_path", None)
version = os.environ.get("version", "v2")
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
device = "cuda" if torch.cuda.is_available() else "cpu"
dict_language_v2 = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("粤语"): "all_yue", # 全部按中文识别
i18n("韩文"): "all_ko", # 全部按韩文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("粤英混合"): "yue", # 按粤英混合识别####不变
i18n("韩英混合"): "ko", # 按韩英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种
}
dict_language = dict_language_v2
cut_method = {
i18n("不切"): "cut0",
i18n("凑四句一切"): "cut1",
i18n("凑50字一切"): "cut2",
i18n("按中文句号。切"): "cut3",
i18n("按英文句号.切"): "cut4",
i18n("按标点符号切"): "cut5",
}
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
tts_config.device = device
tts_config.is_half = is_half
tts_config.version = version
if gpt_path is not None:
tts_config.t2s_weights_path = gpt_path
if sovits_path is not None:
tts_config.vits_weights_path = sovits_path
if cnhubert_base_path is not None:
tts_config.cnhuhbert_base_path = cnhubert_base_path
if bert_path is not None:
tts_config.bert_base_path = bert_path
print(tts_config)
tts_pipeline = TTS(tts_config)
gpt_path = tts_config.t2s_weights_path
sovits_path = tts_config.vits_weights_path
version = tts_config.version
def inference(text, text_lang,
ref_audio_path,
aux_ref_audio_paths,
prompt_text,
prompt_lang, top_k,
top_p, temperature,
text_split_method, batch_size,
speed_factor, ref_text_free,
split_bucket, fragment_interval,
seed, keep_random, parallel_infer,
repetition_penalty
):
seed = -1 if keep_random else seed
actual_seed = seed if seed not in [-1,
"", None] else random.randrange(1 << 32)
inputs = {
"text": text,
"text_lang": dict_language[text_lang],
"ref_audio_path": ref_audio_path,
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
"prompt_text": prompt_text if not ref_text_free else "",
"prompt_lang": dict_language[prompt_lang],
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"text_split_method": cut_method[text_split_method],
"batch_size": int(batch_size),
"speed_factor": float(speed_factor),
"split_bucket": split_bucket,
"return_fragment": False,
"fragment_interval": fragment_interval,
"seed": actual_seed,
"parallel_infer": parallel_infer,
"repetition_penalty": repetition_penalty,
}
for item in tts_pipeline.run(inputs):
yield item, actual_seed
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split('(\d+)', s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def change_choices():
SoVITS_names, GPT_names = get_weights_names(
GPT_weight_root, SoVITS_weight_root)
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
pretrained_sovits_name = [
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
pretrained_gpt_name = ["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
_ = [[], []]
for i in range(2):
if os.path.exists(pretrained_gpt_name[i]):
_[0].append(pretrained_gpt_name[i])
if os.path.exists(pretrained_sovits_name[i]):
_[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name, pretrained_sovits_name = _
SoVITS_weight_root = ["SoVITS_weights_v2", "SoVITS_weights"]
GPT_weight_root = ["GPT_weights_v2", "GPT_weights"]
for path in SoVITS_weight_root+GPT_weight_root:
os.makedirs(path, exist_ok=True)
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
SoVITS_names = [i for i in pretrained_sovits_name]
for path in SoVITS_weight_root:
for name in os.listdir(path):
if name.endswith(".pth"):
SoVITS_names.append("%s/%s" % (path, name))
GPT_names = [i for i in pretrained_gpt_name]
for path in GPT_weight_root:
for name in os.listdir(path):
if name.endswith(".ckpt"):
GPT_names.append("%s/%s" % (path, name))
return SoVITS_names, GPT_names
SoVITS_names, GPT_names = get_weights_names(
GPT_weight_root, SoVITS_weight_root)
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
tts_pipeline.init_vits_weights(sovits_path)
global version, dict_language
dict_language = dict_language_v2
if prompt_language is not None and text_language is not None:
if prompt_language in list(dict_language.keys()):
prompt_text_update, prompt_language_update = {'__type__': 'update'}, {
'__type__': 'update', 'value': prompt_language}
else:
prompt_text_update = {'__type__': 'update', 'value': ''}
prompt_language_update = {
'__type__': 'update', 'value': i18n("中文")}
if text_language in list(dict_language.keys()):
text_update, text_language_update = {'__type__': 'update'}, {
'__type__': 'update', 'value': text_language}
else:
text_update = {'__type__': 'update', 'value': ''}
text_language_update = {'__type__': 'update', 'value': i18n("中文")}
return {'__type__': 'update', 'choices': list(dict_language.keys())}, {'__type__': 'update', 'choices': list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
with gr.Blocks(title="GPT-SoVITS 張悦楷") as app:
gr.Markdown(
value=i18n(
"張悦楷")
)
with gr.Column():
# with gr.Group():
gr.Markdown(value=i18n("模型切换"))
with gr.Row():
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(
GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(
SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
refresh_button.click(fn=change_choices, inputs=[], outputs=[
SoVITS_dropdown, GPT_dropdown])
with gr.Row():
with gr.Column():
gr.Markdown(value=i18n("*请上传并填写参考信息"))
with gr.Row():
inp_ref = gr.Audio(label=i18n(
"主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
inp_refs = gr.File(label=i18n(
"辅参考音频(可选多个,或不选)"), file_count="multiple")
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
with gr.Row():
prompt_language = gr.Dropdown(
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
)
with gr.Column():
ref_text_free = gr.Checkbox(label=i18n(
"开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
gr.Markdown(
i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
with gr.Column():
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
text = gr.Textbox(label=i18n("需要合成的文本"),
value="", lines=20, max_lines=20)
text_language = gr.Dropdown(
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
)
with gr.Group():
gr.Markdown(value=i18n("推理设置"))
with gr.Row():
with gr.Column():
batch_size = gr.Slider(minimum=1, maximum=200, step=1, label=i18n(
"batch_size"), value=20, interactive=True)
fragment_interval = gr.Slider(minimum=0.01, maximum=1, step=0.01, label=i18n(
"分段间隔(秒)"), value=0.3, interactive=True)
speed_factor = gr.Slider(
minimum=0.6, maximum=1.65, step=0.05, label="speed_factor", value=1.0, interactive=True)
top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n(
"top_k"), value=5, interactive=True)
top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n(
"top_p"), value=1, interactive=True)
temperature = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n(
"temperature"), value=1, interactive=True)
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.05, label=i18n(
"重复惩罚"), value=1.35, interactive=True)
with gr.Column():
with gr.Row():
how_to_cut = gr.Dropdown(
label=i18n("怎么切"),
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n(
"按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
value=i18n("凑四句一切"),
interactive=True, scale=1
)
parallel_infer = gr.Checkbox(label=i18n(
"并行推理"), value=True, interactive=True, show_label=True)
split_bucket = gr.Checkbox(label=i18n(
"数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True)
with gr.Row():
seed = gr.Number(label=i18n("随机种子"), value=-1)
keep_random = gr.Checkbox(label=i18n(
"保持随机"), value=True, interactive=True, show_label=True)
output = gr.Audio(label=i18n("输出的语音"))
with gr.Row():
inference_button = gr.Button(
i18n("合成语音"), variant="primary")
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
inference_button.click(
inference,
[
text, text_language, inp_ref, inp_refs,
prompt_text, prompt_language,
top_k, top_p, temperature,
how_to_cut, batch_size,
speed_factor, ref_text_free,
split_bucket, fragment_interval,
seed, keep_random, parallel_infer,
repetition_penalty
],
[output, seed],
)
stop_infer.click(tts_pipeline.stop, [], [])
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown, prompt_language, text_language], [
prompt_language, text_language, prompt_text, prompt_language, text, text_language])
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])
with gr.Group():
gr.Markdown(value=i18n(
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
with gr.Row():
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
with gr.Column():
_how_to_cut = gr.Radio(
label=i18n("怎么切"),
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n(
"按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
value=i18n("凑四句一切"),
interactive=True,
)
cut_text = gr.Button(i18n("切分"), variant="primary")
def to_cut(text_inp, how_to_cut):
if len(text_inp.strip()) == 0 or text_inp == []:
return ""
method = get_method(cut_method[how_to_cut])
return method(text_inp)
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
if __name__ == '__main__':
app.queue().launch(
server_name="0.0.0.0",
inbrowser=True,
share=True,
server_port=9876,
quiet=True,
)