|
import logging |
|
import os |
|
import random |
|
import re |
|
import sys |
|
|
|
import gradio as gr |
|
import torch |
|
|
|
from tools.i18n.i18n import I18nAuto, scan_language_list |
|
from TTS_infer_pack.text_segmentation_method import get_method |
|
from TTS_infer_pack.TTS import TTS, TTS_Config |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
sys.path.append("%s/GPT_SoVITS" % (now_dir)) |
|
|
|
logging.getLogger("markdown_it").setLevel(logging.ERROR) |
|
logging.getLogger("urllib3").setLevel(logging.ERROR) |
|
logging.getLogger("httpcore").setLevel(logging.ERROR) |
|
logging.getLogger("httpx").setLevel(logging.ERROR) |
|
logging.getLogger("asyncio").setLevel(logging.ERROR) |
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) |
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) |
|
|
|
|
|
if "_CUDA_VISIBLE_DEVICES" in os.environ: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] |
|
|
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() |
|
|
|
gpt_path = os.environ.get("gpt_path", None) |
|
sovits_path = os.environ.get("sovits_path", None) |
|
cnhubert_base_path = os.environ.get("cnhubert_base_path", None) |
|
bert_path = os.environ.get("bert_path", None) |
|
version = os.environ.get("version", "v2") |
|
|
|
|
|
language = os.environ.get("language", "Auto") |
|
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language |
|
i18n = I18nAuto(language=language) |
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
dict_language_v2 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("粤语"): "all_yue", |
|
i18n("韩文"): "all_ko", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("粤英混合"): "yue", |
|
i18n("韩英混合"): "ko", |
|
i18n("多语种混合"): "auto", |
|
i18n("多语种混合(粤语)"): "auto_yue", |
|
} |
|
dict_language = dict_language_v2 |
|
|
|
cut_method = { |
|
i18n("不切"): "cut0", |
|
i18n("凑四句一切"): "cut1", |
|
i18n("凑50字一切"): "cut2", |
|
i18n("按中文句号。切"): "cut3", |
|
i18n("按英文句号.切"): "cut4", |
|
i18n("按标点符号切"): "cut5", |
|
} |
|
|
|
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml") |
|
tts_config.device = device |
|
tts_config.is_half = is_half |
|
tts_config.version = version |
|
if gpt_path is not None: |
|
tts_config.t2s_weights_path = gpt_path |
|
if sovits_path is not None: |
|
tts_config.vits_weights_path = sovits_path |
|
if cnhubert_base_path is not None: |
|
tts_config.cnhuhbert_base_path = cnhubert_base_path |
|
if bert_path is not None: |
|
tts_config.bert_base_path = bert_path |
|
|
|
print(tts_config) |
|
tts_pipeline = TTS(tts_config) |
|
gpt_path = tts_config.t2s_weights_path |
|
sovits_path = tts_config.vits_weights_path |
|
version = tts_config.version |
|
|
|
|
|
def inference(text, text_lang, |
|
ref_audio_path, |
|
aux_ref_audio_paths, |
|
prompt_text, |
|
prompt_lang, top_k, |
|
top_p, temperature, |
|
text_split_method, batch_size, |
|
speed_factor, ref_text_free, |
|
split_bucket, fragment_interval, |
|
seed, keep_random, parallel_infer, |
|
repetition_penalty |
|
): |
|
|
|
seed = -1 if keep_random else seed |
|
actual_seed = seed if seed not in [-1, |
|
"", None] else random.randrange(1 << 32) |
|
inputs = { |
|
"text": text, |
|
"text_lang": dict_language[text_lang], |
|
"ref_audio_path": ref_audio_path, |
|
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [], |
|
"prompt_text": prompt_text if not ref_text_free else "", |
|
"prompt_lang": dict_language[prompt_lang], |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"text_split_method": cut_method[text_split_method], |
|
"batch_size": int(batch_size), |
|
"speed_factor": float(speed_factor), |
|
"split_bucket": split_bucket, |
|
"return_fragment": False, |
|
"fragment_interval": fragment_interval, |
|
"seed": actual_seed, |
|
"parallel_infer": parallel_infer, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
for item in tts_pipeline.run(inputs): |
|
yield item, actual_seed |
|
|
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split('(\d+)', s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
|
|
def change_choices(): |
|
SoVITS_names, GPT_names = get_weights_names( |
|
GPT_weight_root, SoVITS_weight_root) |
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} |
|
|
|
|
|
pretrained_sovits_name = [ |
|
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"] |
|
pretrained_gpt_name = ["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", |
|
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"] |
|
_ = [[], []] |
|
for i in range(2): |
|
if os.path.exists(pretrained_gpt_name[i]): |
|
_[0].append(pretrained_gpt_name[i]) |
|
if os.path.exists(pretrained_sovits_name[i]): |
|
_[-1].append(pretrained_sovits_name[i]) |
|
pretrained_gpt_name, pretrained_sovits_name = _ |
|
|
|
SoVITS_weight_root = ["SoVITS_weights_v2", "SoVITS_weights"] |
|
GPT_weight_root = ["GPT_weights_v2", "GPT_weights"] |
|
for path in SoVITS_weight_root+GPT_weight_root: |
|
os.makedirs(path, exist_ok=True) |
|
|
|
|
|
def get_weights_names(GPT_weight_root, SoVITS_weight_root): |
|
SoVITS_names = [i for i in pretrained_sovits_name] |
|
for path in SoVITS_weight_root: |
|
for name in os.listdir(path): |
|
if name.endswith(".pth"): |
|
SoVITS_names.append("%s/%s" % (path, name)) |
|
GPT_names = [i for i in pretrained_gpt_name] |
|
for path in GPT_weight_root: |
|
for name in os.listdir(path): |
|
if name.endswith(".ckpt"): |
|
GPT_names.append("%s/%s" % (path, name)) |
|
return SoVITS_names, GPT_names |
|
|
|
|
|
SoVITS_names, GPT_names = get_weights_names( |
|
GPT_weight_root, SoVITS_weight_root) |
|
|
|
|
|
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): |
|
tts_pipeline.init_vits_weights(sovits_path) |
|
global version, dict_language |
|
dict_language = dict_language_v2 |
|
if prompt_language is not None and text_language is not None: |
|
if prompt_language in list(dict_language.keys()): |
|
prompt_text_update, prompt_language_update = {'__type__': 'update'}, { |
|
'__type__': 'update', 'value': prompt_language} |
|
else: |
|
prompt_text_update = {'__type__': 'update', 'value': ''} |
|
prompt_language_update = { |
|
'__type__': 'update', 'value': i18n("中文")} |
|
if text_language in list(dict_language.keys()): |
|
text_update, text_language_update = {'__type__': 'update'}, { |
|
'__type__': 'update', 'value': text_language} |
|
else: |
|
text_update = {'__type__': 'update', 'value': ''} |
|
text_language_update = {'__type__': 'update', 'value': i18n("中文")} |
|
return {'__type__': 'update', 'choices': list(dict_language.keys())}, {'__type__': 'update', 'choices': list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update |
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS 張悦楷") as app: |
|
gr.Markdown( |
|
value=i18n( |
|
"張悦楷") |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(value=i18n("模型切换")) |
|
with gr.Row(): |
|
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted( |
|
GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) |
|
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted( |
|
SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) |
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") |
|
refresh_button.click(fn=change_choices, inputs=[], outputs=[ |
|
SoVITS_dropdown, GPT_dropdown]) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(value=i18n("*请上传并填写参考信息")) |
|
with gr.Row(): |
|
inp_ref = gr.Audio(label=i18n( |
|
"主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath") |
|
inp_refs = gr.File(label=i18n( |
|
"辅参考音频(可选多个,或不选)"), file_count="multiple") |
|
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2) |
|
with gr.Row(): |
|
prompt_language = gr.Dropdown( |
|
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
with gr.Column(): |
|
ref_text_free = gr.Checkbox(label=i18n( |
|
"开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True) |
|
gr.Markdown( |
|
i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。")) |
|
|
|
with gr.Column(): |
|
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式")) |
|
text = gr.Textbox(label=i18n("需要合成的文本"), |
|
value="", lines=20, max_lines=20) |
|
text_language = gr.Dropdown( |
|
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
|
|
with gr.Group(): |
|
gr.Markdown(value=i18n("推理设置")) |
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
batch_size = gr.Slider(minimum=1, maximum=200, step=1, label=i18n( |
|
"batch_size"), value=20, interactive=True) |
|
fragment_interval = gr.Slider(minimum=0.01, maximum=1, step=0.01, label=i18n( |
|
"分段间隔(秒)"), value=0.3, interactive=True) |
|
speed_factor = gr.Slider( |
|
minimum=0.6, maximum=1.65, step=0.05, label="speed_factor", value=1.0, interactive=True) |
|
top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n( |
|
"top_k"), value=5, interactive=True) |
|
top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n( |
|
"top_p"), value=1, interactive=True) |
|
temperature = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n( |
|
"temperature"), value=1, interactive=True) |
|
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.05, label=i18n( |
|
"重复惩罚"), value=1.35, interactive=True) |
|
with gr.Column(): |
|
with gr.Row(): |
|
how_to_cut = gr.Dropdown( |
|
label=i18n("怎么切"), |
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n( |
|
"按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], |
|
value=i18n("凑四句一切"), |
|
interactive=True, scale=1 |
|
) |
|
parallel_infer = gr.Checkbox(label=i18n( |
|
"并行推理"), value=True, interactive=True, show_label=True) |
|
split_bucket = gr.Checkbox(label=i18n( |
|
"数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True) |
|
|
|
with gr.Row(): |
|
seed = gr.Number(label=i18n("随机种子"), value=-1) |
|
keep_random = gr.Checkbox(label=i18n( |
|
"保持随机"), value=True, interactive=True, show_label=True) |
|
|
|
output = gr.Audio(label=i18n("输出的语音")) |
|
with gr.Row(): |
|
inference_button = gr.Button( |
|
i18n("合成语音"), variant="primary") |
|
stop_infer = gr.Button(i18n("终止合成"), variant="primary") |
|
|
|
inference_button.click( |
|
inference, |
|
[ |
|
text, text_language, inp_ref, inp_refs, |
|
prompt_text, prompt_language, |
|
top_k, top_p, temperature, |
|
how_to_cut, batch_size, |
|
speed_factor, ref_text_free, |
|
split_bucket, fragment_interval, |
|
seed, keep_random, parallel_infer, |
|
repetition_penalty |
|
], |
|
[output, seed], |
|
) |
|
stop_infer.click(tts_pipeline.stop, [], []) |
|
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown, prompt_language, text_language], [ |
|
prompt_language, text_language, prompt_text, prompt_language, text, text_language]) |
|
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], []) |
|
|
|
with gr.Group(): |
|
gr.Markdown(value=i18n( |
|
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) |
|
with gr.Row(): |
|
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4) |
|
with gr.Column(): |
|
_how_to_cut = gr.Radio( |
|
label=i18n("怎么切"), |
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n( |
|
"按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], |
|
value=i18n("凑四句一切"), |
|
interactive=True, |
|
) |
|
cut_text = gr.Button(i18n("切分"), variant="primary") |
|
|
|
def to_cut(text_inp, how_to_cut): |
|
if len(text_inp.strip()) == 0 or text_inp == []: |
|
return "" |
|
method = get_method(cut_method[how_to_cut]) |
|
return method(text_inp) |
|
|
|
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4) |
|
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt]) |
|
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")) |
|
|
|
if __name__ == '__main__': |
|
app.queue().launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
share=True, |
|
server_port=9876, |
|
quiet=True, |
|
) |
|
|