File size: 1,643 Bytes
d5f2bf5
 
d2b9628
d63c6cd
d2bf1cc
d5f2bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e99cb9
 
 
 
 
 
 
 
 
6ca20c1
d5f2bf5
e174116
2bc17ff
1e99cb9
c082871
95ec167
2c43fbf
95ec167
2c43fbf
 
c082871
8bba89b
95ec167
7654258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from torch import nn
import gradio as gr


class Generator(nn.Module):
    # Refer to the link below for explanations about nc, nz, and ngf
    # https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#inputs
    def __init__(self, nc=4, nz=100, ngf=64):
        super(Generator, self).__init__()
        self.network = nn.Sequential(
            nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh(),
        )

    def forward(self, input):
        output = self.network(input)
        return output


def path(action, body, hair, top, bottom):

    # body
    if body == "human": body = '0'
    elif body == "alien": body = '1'
    
    # hair

    name = action + str(body) + str(hair) + str(top) + str(bottom)
    return name


gr.Interface(
    path,
    inputs=[
        gr.Radio(choices=["shoot", "slash", "spellcard", "thrust", "walk"], value="shoot"),
        gr.Radio(choices=["human", "alien"], value="human"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["while", "golden", "red", "silver"], value="white"),
    ],
    outputs="image",
    live=False,
).launch()