File size: 15,824 Bytes
2f23f07
52b383d
 
 
 
 
 
c2966ec
52b383d
d5f2bf5
52b383d
 
d63c6cd
d2bf1cc
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
11e4216
 
 
 
d5f2bf5
 
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb64240
 
3c3a705
bb64240
3c3a705
 
 
 
 
 
 
 
 
bb64240
3c3a705
 
 
 
bb64240
 
 
 
 
3c3a705
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
 
 
 
 
bb64240
 
 
 
3c3a705
 
 
 
 
 
 
 
bb64240
 
 
 
3c3a705
bb64240
 
 
 
 
 
af4f972
bb64240
af4f972
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
3c3a705
 
 
bb64240
 
3c3a705
 
 
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
3c3a705
bb64240
3c3a705
bb64240
 
af4f972
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba277c
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
159a124
3c3a705
 
 
 
67fddb0
1e99cb9
af62f38
1e99cb9
5a70ae3
1e99cb9
 
5a70ae3
 
 
 
 
ef99204
 
5a70ae3
 
 
ef99204
 
5a70ae3
 
 
 
2f23f07
5a70ae3
 
2f23f07
 
af62f38
e5456b5
af62f38
 
e5456b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c240920
 
 
e5456b5
 
af62f38
 
b61fd46
 
 
 
5c941b8
af62f38
bb64240
b61fd46
 
af4f972
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159a124
b61fd46
 
 
 
159a124
 
b61fd46
 
 
 
159a124
 
b61fd46
 
 
159a124
 
b61fd46
 
 
 
 
 
 
7a902b1
d5f2bf5
e174116
2bc17ff
3c410f4
c082871
3476eae
 
67fddb0
3476eae
 
6ee80eb
95ec167
2c43fbf
2ba90cf
67fddb0
 
 
 
 
6ee80eb
e5456b5
 
60e9bf1
c082871
136c53f
7a902b1
136c53f
5490d43
3c410f4
ab34b0c
a1d3429
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import gradio as gr

import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F


class RelationModuleMultiScale(torch.nn.Module):

    def __init__(self, img_feature_dim, num_bottleneck, num_frames):
        super(RelationModuleMultiScale, self).__init__()
        self.subsample_num = 3
        self.img_feature_dim = img_feature_dim
        self.scales = [i for i in range(num_frames, 1, -1)]
        self.relations_scales = []
        self.subsample_scales = []
        for scale in self.scales:
            relations_scale = self.return_relationset(num_frames, scale)
            self.relations_scales.append(relations_scale)
            self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
        self.num_frames = num_frames
        self.fc_fusion_scales = nn.ModuleList()
        for i in range(len(self.scales)):
            scale = self.scales[i]
            fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
            self.fc_fusion_scales += [fc_fusion]

    def forward(self, input):
        act_scale_1 = input[:, self.relations_scales[0][0] , :]
        act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
        act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
        act_scale_1 = act_scale_1.unsqueeze(1)
        act_all = act_scale_1.clone()
        for scaleID in range(1, len(self.scales)):
            act_relation_all = torch.zeros_like(act_scale_1)
            num_total_relations = len(self.relations_scales[scaleID])
            num_select_relations = self.subsample_scales[scaleID]
            idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
            for idx in idx_relations_evensample:
                act_relation = input[:, self.relations_scales[scaleID][idx], :]
                act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
                act_relation = self.fc_fusion_scales[scaleID](act_relation)
                act_relation = act_relation.unsqueeze(1)
                act_relation_all += act_relation
            act_all = torch.cat((act_all, act_relation_all), 1)
        return act_all

    def return_relationset(self, num_frames, num_frames_relation):
        import itertools
        return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))


class TransferVAE_Video(nn.Module):

    def __init__(self):
        super(TransferVAE_Video, self).__init__()
        self.f_dim = 512
        self.z_dim = 512
        self.fc_dim = 1024
        self.channels = 3
        self.frames = 8
        self.batch_size = 128
        self.dropout_rate = 0.5
        self.num_class = 15
        self.prior_sample = 'random'
        
        import dcgan_64
        self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
        self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
        self.fc_output_dim = self.fc_dim

        self.relu = nn.LeakyReLU(0.1)
        self.dropout_f = nn.Dropout(p=self.dropout_rate)
        self.dropout_v = nn.Dropout(p=self.dropout_rate)
     
        self.hidden_dim = 512
        self.f_rnn_layers = 1

        self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
        self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)

        self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)

        self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
        self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
        self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)

        self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
        self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
        
        self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
        self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
        
        self.num_bottleneck = 256
        self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
        self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
        self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
        self.feat_aggregated_dim = self.num_bottleneck
            
        self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
        self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
        
        self.relation_domain_classifier_all = nn.ModuleList()
        for i in range(self.frames-1):
            relation_domain_classifier = nn.Sequential(
                nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
                nn.ReLU(),
                nn.Linear(self.feat_aggregated_dim, 2)
            )
            self.relation_domain_classifier_all += [relation_domain_classifier]
        
        self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)
        self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
        self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
    
          
    def encode_and_sample_post(self, x):
        if isinstance(x, list):
            conv_x = self.encoder_frame(x[0])
        else:
            conv_x = self.encoder_frame(x)

        lstm_out, _ = self.z_lstm(conv_x)

        backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
        frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
        lstm_out_f = torch.cat((frontal, backward), dim=1)
        f_mean = self.f_mean(lstm_out_f)
        f_logvar = self.f_logvar(lstm_out_f)
        f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)

        features, _ = self.z_rnn(lstm_out)
        z_mean = self.z_mean(features)
        z_logvar = self.z_logvar(features)
        z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)

        if isinstance(x, list):
            f_mean_list = [f_mean]
            f_post_list = [f_post]
            for t in range(1,3,1):
                conv_x = self.encoder_frame(x[t])
                lstm_out, _ = self.z_lstm(conv_x)
                backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
                frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
                lstm_out_f = torch.cat((frontal, backward), dim=1)
                f_mean = self.f_mean(lstm_out_f)
                f_logvar = self.f_logvar(lstm_out_f)
                f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
                f_mean_list.append(f_mean)
                f_post_list.append(f_post)
            f_mean = f_mean_list
            f_post = f_post_list
        return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post

    
    def decoder_frame(self,zf):
        recon_x = self.decoder(zf)
        return recon_x


    def encoder_frame(self, x):
        x_shape = x.shape
        x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
        x_embed = self.encoder(x)[0]
        return x_embed.view(x_shape[0], x_shape[1], -1)
    

    def reparameterize(self, mean, logvar, random_sampling=True):
        if random_sampling is True:
            eps = torch.randn_like(logvar)
            std = torch.exp(0.5 * logvar)
            z = mean + eps * std
            return z
        else:
            return mean


    def forward(self, x, beta):
        _, _, f_post, _, _, z_post = self.encode_and_sample_post(x)
        if isinstance(f_post, list):
            f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
        else:
            f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
        zf = torch.cat((z_post, f_expand), dim=2)
        recon_x = self.decoder_frame(zf)
        return f_post, z_post, recon_x
    

    

def name2seq(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image[:, :, :3])

    images = np.asarray(images, dtype='f') / 256.0
    images = images.transpose((0, 3, 1, 2))
    images = torch.Tensor(images).unsqueeze(dim=0)
    return images
    

def concat(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image)

    gif_filename = 'demo.gif'
    return imageio.mimsave(gif_filename, images)
    

def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
    
    fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
    
    axs[0, 0].imshow(src_orig)
    axs[0, 0].set_title("\n\n\nOriginal\nInput")
    axs[0, 0].axis('off')

    axs[1, 0].imshow(tar_orig)
    axs[1, 0].axis('off')

    axs[0, 1].imshow(src_recon)
    axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
    axs[0, 1].axis('off')

    axs[1, 1].imshow(tar_recon)
    axs[1, 1].axis('off')

    axs[0, 2].imshow(src_Zt)
    axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
    axs[0, 2].axis('off')

    axs[1, 2].imshow(tar_Zt)
    axs[1, 2].axis('off')
    
    axs[0, 3].imshow(tar_Zf_src_Zt)
    axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
    axs[0, 3].axis('off')

    axs[1, 3].imshow(src_Zf_tar_Zt)
    axs[1, 3].axis('off')
    
    plt.subplots_adjust(hspace=0.06, wspace=0.05)
    
    save_name = 'MyPlot_{}.png'.format(frame_id)
    
    plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
    

# == Load Model ==
model = TransferVAE_Video()
model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
model.eval()
    
  
def run(action_source, hair_source, top_source, bottom_source, action_target, hair_target, top_target, bottom_target):

    # == Source Avatar ==
    # body
    body_source = '0'
    
    # hair
    if hair_source == "green": hair_source = '0'
    elif hair_source == "yellow": hair_source = '2'
    elif hair_source == "rose": hair_source = '4'
    elif hair_source == "red": hair_source = '7'
    elif hair_source == "wine": hair_source = '8'
    
    # top
    if top_source == "brown": top_source = '0'
    elif top_source == "blue": top_source = '1'
    elif top_source == "white": top_source = '2'
    
    # bottom
    if bottom_source == "white": bottom_source = '0'
    elif bottom_source == "golden": bottom_source = '1'
    elif bottom_source == "red": bottom_source = '2'
    elif bottom_source == "silver": bottom_source = '3'
    
    file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
    file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
    
    
    # == Target Avatar ==
    # body
    body_target = '1'
    
    # hair
    if hair_target == "violet": hair_target = '1'
    elif hair_target == "silver": hair_target = '3'
    elif hair_target == "purple": hair_target = '5'
    elif hair_target == "grey": hair_target = '6'
    elif hair_target == "golden": hair_target = '9'
    
    # top
    if top_target == "grey": top_target = '3'
    elif top_target == "khaki": top_target = '4'
    elif top_target == "linen": top_target = '5'
    elif top_target == "ocre": top_target = '6'
    
    # bottom
    if bottom_target == "denim": bottom_target = '4'
    elif bottom_target == "olive": bottom_target = '5'
    elif bottom_target == "brown": bottom_target = '6'
    
    file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
    file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
    
    
    # == Load Input ==
    images_source = name2seq(file_name_source)
    images_target = name2seq(file_name_target)
    x = torch.cat((images_source, images_target), dim=0)
    
    
    # == Forward ==
    with torch.no_grad():
        f_post, z_post, recon_x = model(x, [0]*3)
     
    src_orig_sample = x[0, :, :, :, :]
    src_recon_sample = recon_x[0, :, :, :, :]
    src_f_post = f_post[0, :].unsqueeze(0)
    src_z_post = z_post[0, :, :].unsqueeze(0)

    tar_orig_sample = x[1, :, :, :, :]
    tar_recon_sample = recon_x[1, :, :, :, :]
    tar_f_post = f_post[1, :].unsqueeze(0)
    tar_z_post = z_post[1, :, :].unsqueeze(0)   
    
    
    # == Visualize ==
    for frame in range(8):
    
        # original frame
        src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # reconstructed frame
        src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zt
        f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, 512)
        zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
        recon_x_src = model.decoder_frame(zf_src)
        src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, 512)
        zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2)
        recon_x_tar = model.decoder_frame(zf_tar)
        tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zf_Zt
        f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, 512)
        zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2)
        recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
        src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, 512)
        zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2)
        recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
        tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))

        MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
        
    a = concat('MyPlot_')
    
    return 'demo.gif'


gr.Interface(
    fn=run,
    inputs=[
        gr.Markdown(
            """
            Source Avatar - Human πŸ‘¦πŸ»
            """
        ),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
        gr.Markdown(
            """
            Target Avatar - Alien πŸ‘½
            """
        ),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
        gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
        gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
        gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
    ],
    outputs=[
        gr.components.Image(type="file", label="Domain Disentanglement"),
    ],
    live=True,
    cache_examples=True,
    title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()