File size: 15,824 Bytes
2f23f07 52b383d c2966ec 52b383d d5f2bf5 52b383d d63c6cd d2bf1cc 11e4216 3c3a705 11e4216 d5f2bf5 11e4216 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 af4f972 bb64240 af4f972 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 3c3a705 bb64240 af4f972 bb64240 2ba277c b61fd46 3c3a705 159a124 3c3a705 67fddb0 1e99cb9 af62f38 1e99cb9 5a70ae3 1e99cb9 5a70ae3 ef99204 5a70ae3 ef99204 5a70ae3 2f23f07 5a70ae3 2f23f07 af62f38 e5456b5 af62f38 e5456b5 c240920 e5456b5 af62f38 b61fd46 5c941b8 af62f38 bb64240 b61fd46 af4f972 b61fd46 159a124 b61fd46 159a124 b61fd46 159a124 b61fd46 159a124 b61fd46 7a902b1 d5f2bf5 e174116 2bc17ff 3c410f4 c082871 3476eae 67fddb0 3476eae 6ee80eb 95ec167 2c43fbf 2ba90cf 67fddb0 6ee80eb e5456b5 60e9bf1 c082871 136c53f 7a902b1 136c53f 5490d43 3c410f4 ab34b0c a1d3429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import gradio as gr
import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
class RelationModuleMultiScale(torch.nn.Module):
def __init__(self, img_feature_dim, num_bottleneck, num_frames):
super(RelationModuleMultiScale, self).__init__()
self.subsample_num = 3
self.img_feature_dim = img_feature_dim
self.scales = [i for i in range(num_frames, 1, -1)]
self.relations_scales = []
self.subsample_scales = []
for scale in self.scales:
relations_scale = self.return_relationset(num_frames, scale)
self.relations_scales.append(relations_scale)
self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
self.num_frames = num_frames
self.fc_fusion_scales = nn.ModuleList()
for i in range(len(self.scales)):
scale = self.scales[i]
fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
self.fc_fusion_scales += [fc_fusion]
def forward(self, input):
act_scale_1 = input[:, self.relations_scales[0][0] , :]
act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
act_scale_1 = act_scale_1.unsqueeze(1)
act_all = act_scale_1.clone()
for scaleID in range(1, len(self.scales)):
act_relation_all = torch.zeros_like(act_scale_1)
num_total_relations = len(self.relations_scales[scaleID])
num_select_relations = self.subsample_scales[scaleID]
idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
for idx in idx_relations_evensample:
act_relation = input[:, self.relations_scales[scaleID][idx], :]
act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
act_relation = self.fc_fusion_scales[scaleID](act_relation)
act_relation = act_relation.unsqueeze(1)
act_relation_all += act_relation
act_all = torch.cat((act_all, act_relation_all), 1)
return act_all
def return_relationset(self, num_frames, num_frames_relation):
import itertools
return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))
class TransferVAE_Video(nn.Module):
def __init__(self):
super(TransferVAE_Video, self).__init__()
self.f_dim = 512
self.z_dim = 512
self.fc_dim = 1024
self.channels = 3
self.frames = 8
self.batch_size = 128
self.dropout_rate = 0.5
self.num_class = 15
self.prior_sample = 'random'
import dcgan_64
self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
self.fc_output_dim = self.fc_dim
self.relu = nn.LeakyReLU(0.1)
self.dropout_f = nn.Dropout(p=self.dropout_rate)
self.dropout_v = nn.Dropout(p=self.dropout_rate)
self.hidden_dim = 512
self.f_rnn_layers = 1
self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)
self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)
self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
self.num_bottleneck = 256
self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
self.feat_aggregated_dim = self.num_bottleneck
self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
self.relation_domain_classifier_all = nn.ModuleList()
for i in range(self.frames-1):
relation_domain_classifier = nn.Sequential(
nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
nn.ReLU(),
nn.Linear(self.feat_aggregated_dim, 2)
)
self.relation_domain_classifier_all += [relation_domain_classifier]
self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)
self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
def encode_and_sample_post(self, x):
if isinstance(x, list):
conv_x = self.encoder_frame(x[0])
else:
conv_x = self.encoder_frame(x)
lstm_out, _ = self.z_lstm(conv_x)
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
features, _ = self.z_rnn(lstm_out)
z_mean = self.z_mean(features)
z_logvar = self.z_logvar(features)
z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)
if isinstance(x, list):
f_mean_list = [f_mean]
f_post_list = [f_post]
for t in range(1,3,1):
conv_x = self.encoder_frame(x[t])
lstm_out, _ = self.z_lstm(conv_x)
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
f_mean_list.append(f_mean)
f_post_list.append(f_post)
f_mean = f_mean_list
f_post = f_post_list
return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post
def decoder_frame(self,zf):
recon_x = self.decoder(zf)
return recon_x
def encoder_frame(self, x):
x_shape = x.shape
x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
x_embed = self.encoder(x)[0]
return x_embed.view(x_shape[0], x_shape[1], -1)
def reparameterize(self, mean, logvar, random_sampling=True):
if random_sampling is True:
eps = torch.randn_like(logvar)
std = torch.exp(0.5 * logvar)
z = mean + eps * std
return z
else:
return mean
def forward(self, x, beta):
_, _, f_post, _, _, z_post = self.encode_and_sample_post(x)
if isinstance(f_post, list):
f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
else:
f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
zf = torch.cat((z_post, f_expand), dim=2)
recon_x = self.decoder_frame(zf)
return f_post, z_post, recon_x
def name2seq(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image[:, :, :3])
images = np.asarray(images, dtype='f') / 256.0
images = images.transpose((0, 3, 1, 2))
images = torch.Tensor(images).unsqueeze(dim=0)
return images
def concat(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image)
gif_filename = 'demo.gif'
return imageio.mimsave(gif_filename, images)
def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
axs[0, 0].imshow(src_orig)
axs[0, 0].set_title("\n\n\nOriginal\nInput")
axs[0, 0].axis('off')
axs[1, 0].imshow(tar_orig)
axs[1, 0].axis('off')
axs[0, 1].imshow(src_recon)
axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
axs[0, 1].axis('off')
axs[1, 1].imshow(tar_recon)
axs[1, 1].axis('off')
axs[0, 2].imshow(src_Zt)
axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
axs[0, 2].axis('off')
axs[1, 2].imshow(tar_Zt)
axs[1, 2].axis('off')
axs[0, 3].imshow(tar_Zf_src_Zt)
axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
axs[0, 3].axis('off')
axs[1, 3].imshow(src_Zf_tar_Zt)
axs[1, 3].axis('off')
plt.subplots_adjust(hspace=0.06, wspace=0.05)
save_name = 'MyPlot_{}.png'.format(frame_id)
plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
# == Load Model ==
model = TransferVAE_Video()
model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
model.eval()
def run(action_source, hair_source, top_source, bottom_source, action_target, hair_target, top_target, bottom_target):
# == Source Avatar ==
# body
body_source = '0'
# hair
if hair_source == "green": hair_source = '0'
elif hair_source == "yellow": hair_source = '2'
elif hair_source == "rose": hair_source = '4'
elif hair_source == "red": hair_source = '7'
elif hair_source == "wine": hair_source = '8'
# top
if top_source == "brown": top_source = '0'
elif top_source == "blue": top_source = '1'
elif top_source == "white": top_source = '2'
# bottom
if bottom_source == "white": bottom_source = '0'
elif bottom_source == "golden": bottom_source = '1'
elif bottom_source == "red": bottom_source = '2'
elif bottom_source == "silver": bottom_source = '3'
file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
# == Target Avatar ==
# body
body_target = '1'
# hair
if hair_target == "violet": hair_target = '1'
elif hair_target == "silver": hair_target = '3'
elif hair_target == "purple": hair_target = '5'
elif hair_target == "grey": hair_target = '6'
elif hair_target == "golden": hair_target = '9'
# top
if top_target == "grey": top_target = '3'
elif top_target == "khaki": top_target = '4'
elif top_target == "linen": top_target = '5'
elif top_target == "ocre": top_target = '6'
# bottom
if bottom_target == "denim": bottom_target = '4'
elif bottom_target == "olive": bottom_target = '5'
elif bottom_target == "brown": bottom_target = '6'
file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
# == Load Input ==
images_source = name2seq(file_name_source)
images_target = name2seq(file_name_target)
x = torch.cat((images_source, images_target), dim=0)
# == Forward ==
with torch.no_grad():
f_post, z_post, recon_x = model(x, [0]*3)
src_orig_sample = x[0, :, :, :, :]
src_recon_sample = recon_x[0, :, :, :, :]
src_f_post = f_post[0, :].unsqueeze(0)
src_z_post = z_post[0, :, :].unsqueeze(0)
tar_orig_sample = x[1, :, :, :, :]
tar_recon_sample = recon_x[1, :, :, :, :]
tar_f_post = f_post[1, :].unsqueeze(0)
tar_z_post = z_post[1, :, :].unsqueeze(0)
# == Visualize ==
for frame in range(8):
# original frame
src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# reconstructed frame
src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zt
f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, 512)
zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
recon_x_src = model.decoder_frame(zf_src)
src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, 512)
zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2)
recon_x_tar = model.decoder_frame(zf_tar)
tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zf_Zt
f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, 512)
zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2)
recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, 512)
zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2)
recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
a = concat('MyPlot_')
return 'demo.gif'
gr.Interface(
fn=run,
inputs=[
gr.Markdown(
"""
Source Avatar - Human π¦π»
"""
),
gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
gr.Radio(choices=["brown", "blue", "white"], value="brown"),
gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
gr.Markdown(
"""
Target Avatar - Alien π½
"""
),
gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
],
outputs=[
gr.components.Image(type="file", label="Domain Disentanglement"),
],
live=True,
cache_examples=True,
title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()
|