File size: 5,623 Bytes
de7a048
 
d0fad33
de7a048
 
 
 
d0fad33
de7a048
d0fad33
de7a048
 
 
 
 
 
d0fad33
 
de7a048
 
 
 
 
 
d0fad33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7a048
d0fad33
 
 
 
de7a048
d0fad33
 
de7a048
d0fad33
 
de7a048
d0fad33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7a048
d0fad33
 
 
 
de7a048
d0fad33
 
 
 
 
 
 
 
 
 
 
 
 
de7a048
d0fad33
 
 
 
 
de7a048
d0fad33
 
 
 
 
 
de7a048
 
3672be6
d0fad33
 
 
 
 
 
 
 
 
de7a048
9a0839a
d0fad33
de7a048
d0fad33
de7a048
d0fad33
 
de7a048
 
 
d0fad33
 
 
 
 
de7a048
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os

import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from huggingface_hub import snapshot_download, hf_hub_download
from realesrgan.utils import RealESRGANer
import examples

REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
GFPGAN_REPO_ID = 'leonelhs/gfpgan'

os.system("pip freeze")

examples.download()

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename='realesr-general-x4v3.pth')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

os.makedirs('output', exist_ok=True)


# def inference(img, version, scale, weight):
def predict(img, version, scale):
    # weight /= 100
    print(img, version, scale)
    if scale > 4:
        scale = 4  # avoid too large scale value
    try:
        extension = os.path.splitext(os.path.basename(str(img)))[1]
        img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:  # for gray inputs
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h > 3500 or w > 3500:
            print('too large size')
            return None, None

        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        face_enhancer = None
        snapshot_folder = snapshot_download(repo_id=GFPGAN_REPO_ID)

        if version == 'v1.2':
            path = os.path.join(snapshot_folder, 'GFPGANv1.2.pth')
            face_enhancer = GFPGANer(
                model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.3':
            path = os.path.join(snapshot_folder, 'GFPGANv1.3.pth')
            face_enhancer = GFPGANer(
                model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.4':
            path = os.path.join(snapshot_folder, 'GFPGANv1.4.pth')
            face_enhancer = GFPGANer(
                model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RestoreFormer':
            path = os.path.join(snapshot_folder, 'RestoreFormer.pth')
            face_enhancer = GFPGANer(
                model_path=path, upscale=2, arch='RestoreFormer', channel_multiplier=2,
                bg_upsampler=upsampler)

        try:
            _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        except RuntimeError as error:
            print('Error', error)

        try:
            if scale != 2:
                interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
                h, w = img.shape[0:2]
                output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)
        if img_mode == 'RGBA':  # RGBA images should be saved in png format
            extension = 'png'
        else:
            extension = 'jpg'
        save_path = f'output/out.{extension}'
        cv2.imwrite(save_path, output)

        output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        return output, save_path
    except Exception as error:
        print('global exception', error)
        return None, None


title = "GFPGAN: Practical Face Restoration Algorithm"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply upload your image.<br>
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
"""
article = r"""

[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)

If you have any question, please email πŸ“§ `[email protected]` or `[email protected]`.

<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
"""
demo = gr.Interface(
    predict, [
        gr.Image(type="filepath", label="Input"),
        gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
        gr.Number(label="Rescaling factor", value=2),
    ], [
        gr.Image(type="numpy", label="Output (The whole image)"),
        gr.File(label="Download the output image")
    ],
    title=title,
    description=description,
    article=article,
    examples=[['AI-generate.jpg', 'v1.4', 2],
              ['lincoln.jpg', 'v1.4', 2],
              ['Blake_Lively.jpg', 'v1.4', 2],
              ['10045.png', 'v1.4', 2]])
demo.queue().launch()