Spaces:
Running
Running
title: FBeta_Score | |
datasets: | |
- | |
tags: | |
- evaluate | |
- metric | |
description: "Calculate FBeta_Score" | |
sdk: gradio | |
sdk_version: 3.0.2 | |
app_file: app.py | |
pinned: false | |
# Metric Card for FBeta_Score | |
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.* | |
## Metric Description | |
*Compute the F-beta score. | |
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. | |
The beta parameter determines the weight of recall in the combined score. beta < 1 lends more weight to precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> +inf only recall).* | |
## How to Use | |
``` python | |
f_beta = evaluate.load("leslyarun/f_beta") | |
results = f_beta.compute(references=[0, 1], predictions=[0, 1], beta=0.5) | |
print(results) | |
{'f_beta_score': 1.0} | |
``` | |
## Citation | |
@article{scikit-learn, | |
title={Scikit-learn: Machine Learning in {P}ython}, | |
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
journal={Journal of Machine Learning Research}, | |
volume={12}, | |
pages={2825--2830}, | |
year={2011} | |
## Further References | |
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html#sklearn.metrics.fbeta_score |