Spaces:
Runtime error
Runtime error
File size: 8,366 Bytes
0646af4 788a6f6 feda34f 788a6f6 0646af4 feda34f 28e7d81 feda34f 28e7d81 feda34f 28e7d81 feda34f 28e7d81 feda34f 28e7d81 feda34f 55d5517 feda34f 55d5517 0646af4 788a6f6 55d5517 d2d1cfd aa74bcc 1b9518f 55d5517 788a6f6 28e7d81 788a6f6 feda34f 788a6f6 28e7d81 788a6f6 feda34f 788a6f6 55d5517 788a6f6 55d5517 788a6f6 feda34f 788a6f6 feda34f 28e7d81 788a6f6 28e7d81 788a6f6 28e7d81 feda34f 55d5517 feda34f 788a6f6 0646af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import ai
import ai_tasks
import code_tasks
import custom_code
def open__get_text_from_url() -> str:
with open("code_tasks/text_in_url.py") as f:
return f.read()
def open__get_images_from_url() -> str:
with open("code_tasks/images_in_url.py") as f:
return f.read()
def open__get_image_infos() -> str:
with open("custom_code/image_analysis.py") as f:
return f.read()
def get_text_and_images_from_url(url):
return (
code_tasks.text_in_url.get_text_from_url(url),
code_tasks.images_in_url.get_images_from_url(url),
)
def get_images_analysis(images):
return custom_code.image_analysis.analyze_images(eval(images))
def summarize_text(
prompt,
url,
dimensions,
text,
images,
image_infos,
summary,
headline,
):
return ai_tasks.text_summary._summarize_text(
prompt,
url=url,
dimensions=dimensions,
text=text,
images=images,
image_infos=image_infos,
summary=summary,
headline=headline,
)
def get_headline_for_image(
prompt,
url,
dimensions,
text,
images,
image_infos,
summary,
headline,
):
import json
output = ai_tasks.headlines_for_images._get_headline_for_image(
prompt,
url=url,
dimensions=dimensions,
text=text,
images=images,
image_infos=image_infos,
summary=summary,
headline=headline,
)
return output, json.loads(output)["image_url"]
def get_headline_and_prompt(
prompt,
url,
dimensions,
text,
images,
image_infos,
summary,
headline,
):
import json
output = ai_tasks.headlines_for_ai_images._generate_headline_and_prompt(
prompt,
url=url,
dimensions=dimensions,
text=text,
images=images,
image_infos=image_infos,
summary=summary,
headline=headline,
)
output_dict = json.loads(output)
return (
output,
output_dict["ai_prompt"],
output_dict["ai_prompt"],
output_dict["dimension_to_map"],
output_dict["dimension_to_map"],
)
def generate_image(prompt, dimensions):
return ai.image.urls(prompt, 1, dimensions)[0]
with gr.Blocks() as demo:
gr.Markdown(
"""
## Scrape a website and get an ad
Enter an url and the dimensions for an image (eg, 300x600).
<br> A sequence of code and AI tasks will scrape the website and find an image that best fits those dimensions. They will also generate an AI image.
<br> It's your job to edit either of those images.
<br> A headline for your ad will also be generated.
<br> Play around with the AI tasks to get different results. Text in between {} are variables that you have access to.
"""
)
url = gr.Textbox(label="Input: {url}")
dimensions = gr.Textbox(label="Input: {dimensions}")
execute = gr.Button("Run")
with gr.Box():
gr.Markdown("Code task")
with gr.Row():
with gr.Column():
gr.Textbox(
"write a python function that given an url returns all text in the website",
label="ChatGPT-4 prompt",
)
with gr.Accordion("Input: {url}", open=False):
gr.Code(open__get_text_from_url(), "python")
with gr.Column():
text = gr.Textbox(
label="Output: {text}", lines=10, max_lines=10, interactive=False
)
with gr.Box():
gr.Markdown("Code task")
with gr.Row():
with gr.Column():
gr.Textbox(
"write a python function that given an url returns all images in the website",
label="ChatGPT-4 prompt",
)
with gr.Accordion("Input: {url}", open=False):
gr.Code(open__get_images_from_url(), "python")
with gr.Column():
images = gr.Textbox(
label="Output: {images}", lines=10, max_lines=10, interactive=False
)
with gr.Box():
gr.Markdown("Custom code: analyze images with Google Vision")
with gr.Row():
with gr.Column():
with gr.Accordion("Input: {images}", open=False):
gr.Code(open__get_image_infos(), "python")
with gr.Column():
image_infos = gr.Textbox(
label="Output: {image_infos}",
lines=10,
max_lines=10,
interactive=False,
)
with gr.Box():
gr.Markdown("AI task: summarize text")
with gr.Row():
with gr.Column():
summary_prompt = gr.Textbox(
ai_tasks.text_summary.PROMPT,
label="Instructions:",
interactive=True,
)
with gr.Column():
summary = gr.Textbox(
label="Output: {summary}", lines=10, max_lines=10, interactive=False
)
with gr.Box():
gr.Markdown("AI task: generate headline for image")
with gr.Row():
with gr.Column():
headline_prompt = gr.Textbox(
ai_tasks.headlines_for_images.PROMPT,
label="Instructions:",
interactive=True,
lines=20,
)
with gr.Column():
headline = gr.Textbox(
label="Output: {headline}",
lines=10,
max_lines=10,
interactive=False,
)
headline_image = gr.Image(interactive=False)
with gr.Box():
gr.Markdown("AI task: generate headline and prompt for image")
with gr.Row():
with gr.Column():
ai_prompt_prompt = gr.Textbox(
ai_tasks.headlines_for_ai_images.PROMPT,
label="Instructions:",
interactive=True,
)
with gr.Column():
headline_and_prompt = gr.Textbox(
label="Output: {headline_prompt}",
lines=20,
max_lines=20,
interactive=False,
)
dimension_to_map = gr.Textbox(
label="Output: {dimension_to_map}",
interactive=False,
)
ai_prompt = gr.Textbox(
label="Output: {ai_prompt}",
interactive=False,
)
with gr.Box():
gr.Markdown("AI task: generate image")
with gr.Row():
with gr.Column():
with gr.Box():
ai_image_prompt = gr.Textbox(
label="Instructions: {ai_prompt}",
interactive=False,
)
image_dimensions = gr.Textbox(
label="Input: {dimension_to_map}",
interactive=False,
)
with gr.Column():
ai_image = gr.Image()
vars_ = [
url,
dimensions,
text,
images,
image_infos,
summary,
headline,
]
execute.click(
get_text_and_images_from_url, inputs=[url], outputs=[text, images]
).success(
get_images_analysis,
inputs=[images],
outputs=[image_infos],
).success(
summarize_text,
inputs=[summary_prompt] + vars_, # type: ignore
outputs=[summary],
).success(
get_headline_for_image,
inputs=[headline_prompt] + vars_, # type: ignore
outputs=[headline, headline_image],
).success(
get_headline_and_prompt,
inputs=[ai_prompt_prompt] + vars_, # type: ignore
outputs=[
headline_and_prompt,
ai_prompt,
ai_image_prompt,
dimension_to_map,
image_dimensions,
],
).success(
generate_image, inputs=[ai_image_prompt, image_dimensions], outputs=[ai_image]
)
demo.launch()
|