File size: 3,076 Bytes
8260e47 bf29adc e6eaebf bf29adc 8260e47 630e69b bf29adc 630e69b bf29adc e6eaebf bf29adc 630e69b 8260e47 bf29adc 8260e47 bf29adc 8260e47 bf29adc 8260e47 bf29adc 8260e47 95190fc bf29adc 95190fc bf29adc 630e69b bf29adc 95190fc 8260e47 95190fc 8260e47 630e69b bf29adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import pathlib
import zipfile
from typing import Any, Dict, List
import cv2
import gradio as gr
import numpy as np
import torch
from gradio_image_annotation import image_annotator
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from src.plot_utils import render_masks
choice_mapping: Dict[str, List[str]] = {
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
"base_plus": ["sam2_hiera_b+.yaml", "assets/checkpoints/sam2_hiera_base_plus.pt"],
"large": ["sam2_hiera_l.yaml", "assets/checkpoints/sam2_hiera_large.pt"],
}
def predict(model_choice, annotations: Dict[str, Any]):
config_file, ckpt_path = choice_mapping[str(model_choice)]
device = "cuda" if torch.cuda.is_available() else "cpu"
sam2_model = build_sam2(config_file, ckpt_path, device=device)
predictor = SAM2ImagePredictor(sam2_model)
predictor.set_image(annotations["image"])
coordinates = []
for i in range(len(annotations["boxes"])):
coordinate = [
int(annotations["boxes"][i]["xmin"]),
int(annotations["boxes"][i]["ymin"]),
int(annotations["boxes"][i]["xmax"]),
int(annotations["boxes"][i]["ymax"]),
]
coordinates.append(coordinate)
masks, scores, _ = predictor.predict(
point_coords=None,
point_labels=None,
box=np.array(coordinates),
multimask_output=False,
)
for count, mask in enumerate(masks):
mask = mask.transpose(1, 2, 0) # type:ignore
mask_image = (mask * 255).astype(np.uint8) # Convert to uint8 format
cv2.imwrite(f"assets/mask_{count}.png", mask_image)
mask_dir = pathlib.Path("assets/")
with zipfile.ZipFile("assets/masks.zip", "w") as archive:
for mask_file in mask_dir.glob("mask_*.png"):
archive.write(mask_file, arcname=mask_file.relative_to(mask_dir))
return [
render_masks(annotations["image"], masks),
gr.DownloadButton("Download Mask(s)", value="assets/masks.zip", visible=True),
]
with gr.Blocks(delete_cache=(30, 30)) as demo:
gr.Markdown(
"""
# 1. Choose Model Checkpoint
"""
)
with gr.Row():
model = gr.Dropdown(
choices=["tiny", "small", "base_plus", "large"],
value="tiny",
label="Model Checkpoint",
info="Which model checkpoint to load?",
)
gr.Markdown(
"""
# 2. Upload your Image and draw bounding box(es)
"""
)
annotator = image_annotator(
value={"image": cv2.imread("assets/example.png")},
disable_edit_boxes=True,
label="Draw a bounding box",
)
btn = gr.Button("Get Segmentation Mask(s)")
download_btn = gr.DownloadButton(
"Download Mask(s)", value="assets/masks.zip", visible=False
)
btn.click(fn=predict, inputs=[model, annotator], outputs=[gr.Plot(), download_btn])
demo.launch()
|