|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import librosa |
|
|
|
import numpy as np |
|
|
|
from torchmetrics import ScaleInvariantSignalNoiseRatio |
|
|
|
|
|
def extract_si_snr(audio_ref, audio_deg, **kwargs): |
|
|
|
kwargs = kwargs["kwargs"] |
|
fs = kwargs["fs"] |
|
method = kwargs["method"] |
|
|
|
si_snr = ScaleInvariantSignalNoiseRatio() |
|
|
|
if fs != None: |
|
audio_ref, _ = librosa.load(audio_ref, sr=fs) |
|
audio_deg, _ = librosa.load(audio_deg, sr=fs) |
|
else: |
|
audio_ref, fs = librosa.load(audio_ref) |
|
audio_deg, fs = librosa.load(audio_deg) |
|
|
|
if len(audio_ref) != len(audio_deg): |
|
if method == "cut": |
|
length = min(len(audio_ref), len(audio_deg)) |
|
audio_ref = audio_ref[:length] |
|
audio_deg = audio_deg[:length] |
|
elif method == "dtw": |
|
_, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True) |
|
audio_ref_new = [] |
|
audio_deg_new = [] |
|
for i in range(wp.shape[0]): |
|
ref_index = wp[i][0] |
|
deg_index = wp[i][1] |
|
audio_ref_new.append(audio_ref[ref_index]) |
|
audio_deg_new.append(audio_deg[deg_index]) |
|
audio_ref = np.array(audio_ref_new) |
|
audio_deg = np.array(audio_deg_new) |
|
assert len(audio_ref) == len(audio_deg) |
|
|
|
audio_ref = torch.from_numpy(audio_ref) |
|
audio_deg = torch.from_numpy(audio_deg) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
audio_ref = audio_ref.to(device) |
|
audio_deg = audio_deg.to(device) |
|
si_snr = si_snr.to(device) |
|
|
|
return si_snr(audio_deg, audio_ref).detach().cpu().numpy().tolist() |
|
|