|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import numpy as np |
|
import scipy |
|
import torch |
|
from torch import nn, view_as_real, view_as_complex |
|
from torch import nn |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz |
|
import librosa |
|
|
|
|
|
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: |
|
""" |
|
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. |
|
|
|
Args: |
|
x (Tensor): Input tensor. |
|
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. |
|
|
|
Returns: |
|
Tensor: Element-wise logarithm of the input tensor with clipping applied. |
|
""" |
|
return torch.log(torch.clip(x, min=clip_val)) |
|
|
|
|
|
def symlog(x: torch.Tensor) -> torch.Tensor: |
|
return torch.sign(x) * torch.log1p(x.abs()) |
|
|
|
|
|
def symexp(x: torch.Tensor) -> torch.Tensor: |
|
return torch.sign(x) * (torch.exp(x.abs()) - 1) |
|
|
|
|
|
class STFT(nn.Module): |
|
def __init__( |
|
self, |
|
n_fft: int, |
|
hop_length: int, |
|
win_length: int, |
|
center=True, |
|
): |
|
super().__init__() |
|
self.center = center |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
window = torch.hann_window(win_length) |
|
self.register_buffer("window", window) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if not self.center: |
|
pad = self.win_length - self.hop_length |
|
x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect") |
|
|
|
stft_spec = torch.stft( |
|
x, |
|
self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
window=self.window, |
|
center=self.center, |
|
return_complex=False, |
|
) |
|
|
|
rea = stft_spec[:, :, :, 0] |
|
imag = stft_spec[:, :, :, 1] |
|
|
|
log_mag = torch.log( |
|
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5 |
|
) |
|
phase = torch.atan2(imag, rea) |
|
|
|
return log_mag, phase |
|
|
|
|
|
class ISTFT(nn.Module): |
|
""" |
|
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with |
|
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. |
|
See issue: https://github.com/pytorch/pytorch/issues/62323 |
|
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. |
|
The NOLA constraint is met as we trim padded samples anyway. |
|
|
|
Args: |
|
n_fft (int): Size of Fourier transform. |
|
hop_length (int): The distance between neighboring sliding window frames. |
|
win_length (int): The size of window frame and STFT filter. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__( |
|
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same" |
|
): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
window = torch.hann_window(win_length) |
|
self.register_buffer("window", window) |
|
|
|
def forward(self, spec: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. |
|
|
|
Args: |
|
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, |
|
N is the number of frequency bins, and T is the number of time frames. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. |
|
""" |
|
if self.padding == "center": |
|
|
|
return torch.istft( |
|
spec, |
|
self.n_fft, |
|
self.hop_length, |
|
self.win_length, |
|
self.window, |
|
center=True, |
|
) |
|
elif self.padding == "same": |
|
pad = (self.win_length - self.hop_length) // 2 |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
assert spec.dim() == 3, "Expected a 3D tensor as input" |
|
B, N, T = spec.shape |
|
|
|
|
|
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") |
|
ifft = ifft * self.window[None, :, None] |
|
|
|
|
|
output_size = (T - 1) * self.hop_length + self.win_length |
|
y = torch.nn.functional.fold( |
|
ifft, |
|
output_size=(1, output_size), |
|
kernel_size=(1, self.win_length), |
|
stride=(1, self.hop_length), |
|
)[:, 0, 0, pad:-pad] |
|
|
|
|
|
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) |
|
window_envelope = torch.nn.functional.fold( |
|
window_sq, |
|
output_size=(1, output_size), |
|
kernel_size=(1, self.win_length), |
|
stride=(1, self.hop_length), |
|
).squeeze()[pad:-pad] |
|
|
|
|
|
assert (window_envelope > 1e-11).all() |
|
y = y / window_envelope |
|
|
|
return y |
|
|
|
|
|
class MDCT(nn.Module): |
|
""" |
|
Modified Discrete Cosine Transform (MDCT) module. |
|
|
|
Args: |
|
frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, frame_len: int, padding: str = "same"): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.frame_len = frame_len |
|
N = frame_len // 2 |
|
n0 = (N + 1) / 2 |
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() |
|
self.register_buffer("window", window) |
|
|
|
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len) |
|
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N) |
|
|
|
|
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) |
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) |
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio. |
|
|
|
Args: |
|
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size |
|
and T is the length of the audio. |
|
|
|
Returns: |
|
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames |
|
and N is the number of frequency bins. |
|
""" |
|
if self.padding == "center": |
|
audio = torch.nn.functional.pad( |
|
audio, (self.frame_len // 2, self.frame_len // 2) |
|
) |
|
elif self.padding == "same": |
|
|
|
audio = torch.nn.functional.pad( |
|
audio, (self.frame_len // 4, self.frame_len // 4) |
|
) |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
x = audio.unfold(-1, self.frame_len, self.frame_len // 2) |
|
N = self.frame_len // 2 |
|
x = x * self.window.expand(x.shape) |
|
X = torch.fft.fft( |
|
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1 |
|
)[..., :N] |
|
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N) |
|
return torch.real(res) * np.sqrt(2) |
|
|
|
|
|
class IMDCT(nn.Module): |
|
""" |
|
Inverse Modified Discrete Cosine Transform (IMDCT) module. |
|
|
|
Args: |
|
frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, frame_len: int, padding: str = "same"): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.frame_len = frame_len |
|
N = frame_len // 2 |
|
n0 = (N + 1) / 2 |
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() |
|
self.register_buffer("window", window) |
|
|
|
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N) |
|
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2)) |
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) |
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) |
|
|
|
def forward(self, X: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients. |
|
|
|
Args: |
|
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size, |
|
L is the number of frames, and N is the number of frequency bins. |
|
|
|
Returns: |
|
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio. |
|
""" |
|
B, L, N = X.shape |
|
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device) |
|
Y[..., :N] = X |
|
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,))) |
|
y = torch.fft.ifft( |
|
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1 |
|
) |
|
y = ( |
|
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape)) |
|
* np.sqrt(N) |
|
* np.sqrt(2) |
|
) |
|
result = y * self.window.expand(y.shape) |
|
output_size = (1, (L + 1) * N) |
|
audio = torch.nn.functional.fold( |
|
result.transpose(1, 2), |
|
output_size=output_size, |
|
kernel_size=(1, self.frame_len), |
|
stride=(1, self.frame_len // 2), |
|
)[:, 0, 0, :] |
|
|
|
if self.padding == "center": |
|
pad = self.frame_len // 2 |
|
elif self.padding == "same": |
|
pad = self.frame_len // 4 |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
audio = audio[:, pad:-pad] |
|
return audio |
|
|
|
|
|
class FourierHead(nn.Module): |
|
"""Base class for inverse fourier modules.""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, |
|
L is the sequence length, and H denotes the model dimension. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. |
|
""" |
|
raise NotImplementedError("Subclasses must implement the forward method.") |
|
|
|
|
|
class ISTFTHead(FourierHead): |
|
""" |
|
ISTFT Head module for predicting STFT complex coefficients. |
|
|
|
Args: |
|
dim (int): Hidden dimension of the model. |
|
n_fft (int): Size of Fourier transform. |
|
hop_length (int): The distance between neighboring sliding window frames, which should align with |
|
the resolution of the input features. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"): |
|
super().__init__() |
|
out_dim = n_fft + 2 |
|
self.out = torch.nn.Linear(dim, out_dim) |
|
self.istft = ISTFT( |
|
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass of the ISTFTHead module. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, |
|
L is the sequence length, and H denotes the model dimension. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. |
|
""" |
|
x = self.out(x).transpose(1, 2) |
|
mag, p = x.chunk(2, dim=1) |
|
mag = torch.exp(mag) |
|
mag = torch.clip( |
|
mag, max=1e2 |
|
) |
|
|
|
x = torch.cos(p) |
|
y = torch.sin(p) |
|
|
|
|
|
|
|
|
|
|
|
S = mag * (x + 1j * y) |
|
audio = self.istft(S) |
|
return audio |
|
|
|
|
|
class IMDCTSymExpHead(FourierHead): |
|
""" |
|
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function |
|
|
|
Args: |
|
dim (int): Hidden dimension of the model. |
|
mdct_frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized |
|
based on perceptual scaling. Defaults to None. |
|
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
mdct_frame_len: int, |
|
padding: str = "same", |
|
sample_rate: Optional[int] = None, |
|
clip_audio: bool = False, |
|
): |
|
super().__init__() |
|
out_dim = mdct_frame_len // 2 |
|
self.out = nn.Linear(dim, out_dim) |
|
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) |
|
self.clip_audio = clip_audio |
|
|
|
if sample_rate is not None: |
|
|
|
m_max = _hz_to_mel(sample_rate // 2) |
|
m_pts = torch.linspace(0, m_max, out_dim) |
|
f_pts = _mel_to_hz(m_pts) |
|
scale = 1 - (f_pts / f_pts.max()) |
|
|
|
with torch.no_grad(): |
|
self.out.weight.mul_(scale.view(-1, 1)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass of the IMDCTSymExpHead module. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, |
|
L is the sequence length, and H denotes the model dimension. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. |
|
""" |
|
x = self.out(x) |
|
x = symexp(x) |
|
x = torch.clip( |
|
x, min=-1e2, max=1e2 |
|
) |
|
audio = self.imdct(x) |
|
if self.clip_audio: |
|
audio = torch.clip(x, min=-1.0, max=1.0) |
|
|
|
return audio |
|
|
|
|
|
class IMDCTCosHead(FourierHead): |
|
""" |
|
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p) |
|
|
|
Args: |
|
dim (int): Hidden dimension of the model. |
|
mdct_frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
mdct_frame_len: int, |
|
padding: str = "same", |
|
clip_audio: bool = False, |
|
): |
|
super().__init__() |
|
self.clip_audio = clip_audio |
|
self.out = nn.Linear(dim, mdct_frame_len) |
|
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass of the IMDCTCosHead module. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, |
|
L is the sequence length, and H denotes the model dimension. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. |
|
""" |
|
x = self.out(x) |
|
m, p = x.chunk(2, dim=2) |
|
m = torch.exp(m).clip( |
|
max=1e2 |
|
) |
|
audio = self.imdct(m * torch.cos(p)) |
|
if self.clip_audio: |
|
audio = torch.clip(x, min=-1.0, max=1.0) |
|
return audio |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
intermediate_dim (int): Dimensionality of the intermediate layer. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional LayerNorm. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
layer_scale_init_value: float, |
|
adanorm_num_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv1d( |
|
dim, dim, kernel_size=7, padding=3, groups=dim |
|
) |
|
self.adanorm = adanorm_num_embeddings is not None |
|
if adanorm_num_embeddings: |
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, intermediate_dim |
|
) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
if self.adanorm: |
|
assert cond_embedding_id is not None |
|
x = self.norm(x, cond_embedding_id) |
|
else: |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes |
|
|
|
Args: |
|
num_embeddings (int): Number of embeddings. |
|
embedding_dim (int): Dimension of the embeddings. |
|
""" |
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.dim = embedding_dim |
|
self.scale = nn.Embedding( |
|
num_embeddings=num_embeddings, embedding_dim=embedding_dim |
|
) |
|
self.shift = nn.Embedding( |
|
num_embeddings=num_embeddings, embedding_dim=embedding_dim |
|
) |
|
torch.nn.init.ones_(self.scale.weight) |
|
torch.nn.init.zeros_(self.shift.weight) |
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor: |
|
scale = self.scale(cond_embedding_id) |
|
shift = self.shift(cond_embedding_id) |
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) |
|
x = x * scale + shift |
|
return x |
|
|
|
|
|
class ResBlock1(nn.Module): |
|
""" |
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, |
|
but without upsampling layers. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. |
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. |
|
Defaults to (1, 3, 5). |
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. |
|
Defaults to 0.1. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_size: int = 3, |
|
dilation: Tuple[int, int, int] = (1, 3, 5), |
|
lrelu_slope: float = 0.1, |
|
layer_scale_init_value: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.lrelu_slope = lrelu_slope |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=self.get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=self.get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=self.get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
|
|
self.gamma = nn.ParameterList( |
|
[ |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
( |
|
nn.Parameter( |
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True |
|
) |
|
if layer_scale_init_value is not None |
|
else None |
|
), |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): |
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) |
|
xt = c1(xt) |
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) |
|
xt = c2(xt) |
|
if gamma is not None: |
|
xt = gamma * xt |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
@staticmethod |
|
def get_padding(kernel_size: int, dilation: int = 1) -> int: |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
class Backbone(nn.Module): |
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, |
|
C denotes output features, and L is the sequence length. |
|
|
|
Returns: |
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, |
|
and H denotes the model dimension. |
|
""" |
|
raise NotImplementedError("Subclasses must implement the forward method.") |
|
|
|
|
|
class VocosBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. |
|
num_layers (int): Number of ConvNeXtBlock layers. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional model. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
dim: int, |
|
intermediate_dim: int, |
|
num_layers: int, |
|
layer_scale_init_value: Optional[float] = None, |
|
adanorm_num_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) |
|
self.adanorm = adanorm_num_embeddings is not None |
|
if adanorm_num_embeddings: |
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers |
|
self.convnext = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=dim, |
|
intermediate_dim=intermediate_dim, |
|
layer_scale_init_value=layer_scale_init_value, |
|
adanorm_num_embeddings=adanorm_num_embeddings, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
bandwidth_id = kwargs.get("bandwidth_id", None) |
|
x = self.embed(x) |
|
if self.adanorm: |
|
assert bandwidth_id is not None |
|
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) |
|
else: |
|
x = self.norm(x.transpose(1, 2)) |
|
x = x.transpose(1, 2) |
|
for conv_block in self.convnext: |
|
x = conv_block(x, cond_embedding_id=bandwidth_id) |
|
x = self.final_layer_norm(x.transpose(1, 2)) |
|
return x |
|
|
|
|
|
class VocosResNetBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ResBlocks. |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
num_blocks (int): Number of ResBlock1 blocks. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels, |
|
dim, |
|
num_blocks, |
|
layer_scale_init_value=None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = weight_norm( |
|
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) |
|
) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 |
|
self.resnet = nn.Sequential( |
|
*[ |
|
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) |
|
for _ in range(num_blocks) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.embed(x) |
|
x = self.resnet(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
|
|
class Vocos(nn.Module): |
|
def __init__( |
|
self, |
|
input_channels: int = 256, |
|
dim: int = 384, |
|
intermediate_dim: int = 1152, |
|
num_layers: int = 8, |
|
n_fft: int = 800, |
|
hop_size: int = 200, |
|
padding: str = "same", |
|
adanorm_num_embeddings=None, |
|
cfg=None, |
|
): |
|
super().__init__() |
|
|
|
input_channels = ( |
|
cfg.input_channels |
|
if cfg is not None and hasattr(cfg, "input_channels") |
|
else input_channels |
|
) |
|
dim = cfg.dim if cfg is not None and hasattr(cfg, "dim") else dim |
|
intermediate_dim = ( |
|
cfg.intermediate_dim |
|
if cfg is not None and hasattr(cfg, "intermediate_dim") |
|
else intermediate_dim |
|
) |
|
num_layers = ( |
|
cfg.num_layers |
|
if cfg is not None and hasattr(cfg, "num_layers") |
|
else num_layers |
|
) |
|
adanorm_num_embeddings = ( |
|
cfg.adanorm_num_embeddings |
|
if cfg is not None and hasattr(cfg, "adanorm_num_embeddings") |
|
else adanorm_num_embeddings |
|
) |
|
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft |
|
hop_size = ( |
|
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size |
|
) |
|
padding = ( |
|
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding |
|
) |
|
|
|
self.backbone = VocosBackbone( |
|
input_channels=input_channels, |
|
dim=dim, |
|
intermediate_dim=intermediate_dim, |
|
num_layers=num_layers, |
|
adanorm_num_embeddings=adanorm_num_embeddings, |
|
) |
|
self.head = ISTFTHead(dim, n_fft, hop_size, padding) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x) |
|
x = self.head(x) |
|
|
|
return x[:, None, :] |
|
|