|
import torch |
|
import pyworld as pw |
|
import numpy as np |
|
import soundfile as sf |
|
import os |
|
from torchaudio.functional import pitch_shift |
|
import librosa |
|
from librosa.filters import mel as librosa_mel_fn |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5): |
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) |
|
|
|
|
|
def dynamic_range_decompression(x, C=1): |
|
return np.exp(x) / C |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
output = dynamic_range_compression_torch(magnitudes) |
|
return output |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
output = dynamic_range_decompression_torch(magnitudes) |
|
return output |
|
|
|
|
|
class MelSpectrogram(nn.Module): |
|
def __init__( |
|
self, |
|
n_fft, |
|
num_mels, |
|
sampling_rate, |
|
hop_size, |
|
win_size, |
|
fmin, |
|
fmax, |
|
center=False, |
|
): |
|
super(MelSpectrogram, self).__init__() |
|
self.n_fft = n_fft |
|
self.hop_size = hop_size |
|
self.win_size = win_size |
|
self.sampling_rate = sampling_rate |
|
self.num_mels = num_mels |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.center = center |
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
mel = librosa_mel_fn( |
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax |
|
) |
|
mel_basis = torch.from_numpy(mel).float() |
|
hann_window = torch.hann_window(win_size) |
|
|
|
self.register_buffer("mel_basis", mel_basis) |
|
self.register_buffer("hann_window", hann_window) |
|
|
|
def forward(self, y): |
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
( |
|
int((self.n_fft - self.hop_size) / 2), |
|
int((self.n_fft - self.hop_size) / 2), |
|
), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
spec = torch.stft( |
|
y, |
|
self.n_fft, |
|
hop_length=self.hop_size, |
|
win_length=self.win_size, |
|
window=self.hann_window, |
|
center=self.center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
spec = torch.view_as_real(spec) |
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) |
|
|
|
spec = torch.matmul(self.mel_basis, spec) |
|
spec = spectral_normalize_torch(spec) |
|
|
|
return spec |
|
|