respect / app.py
chenzizhao's picture
set padding=True
3e323c0
raw
history blame
11.6 kB
import dataclasses
import logging
import os
from typing import Any, Dict, List
import gradio as gr
import PIL.Image as Image
import PIL.ImageOps as ImageOps
import spaces
import torch
from peft import PeftModel
from transformers import AutoProcessor
from transformers import Idefics2ForConditionalGeneration, Idefics2Processor
from adapter import IdeficsAdapter
from config_generator import GameConfig, generate_game_config
from utils import device, nested_to_device, sorted_list
import copy
### Constants
IMG_DIR = "tangram_pngs"
### Bot server
GEN_KWS: Dict[str, Any] = {
"max_new_tokens": 10,
"do_sample": True,
"temperature": 1.0,
"output_logits": True,
"return_dict_in_generate": True,
"remove_invalid_values": True, # just to be safe
"renormalize_logits": True,
"suppress_tokens": IdeficsAdapter.SUPPRESS_TOKEN_IDS
}
@spaces.GPU(duration=20)
def get_model_response( # predict
model: PeftModel, adapter_name: str, adapter: IdeficsAdapter,
image_paths: List[str], chat : str, chats: List[str],
previous_selected: List[List[str]]
) -> List[str]:
if model.active_adapter != adapter_name:
model.set_adapter(adapter_name)
model.to(device())
new_chats = chats + [chat]
currently_selected = previous_selected[-1] if len(previous_selected) > 0 else []
model_input: Dict[str, Any] = adapter.compose(
image_paths, new_chats, previous_selected, True, True)
model_input = nested_to_device(model_input)
with torch.inference_mode(), torch.autocast(device_type=device().type,
dtype=torch.bfloat16):
model_output = model.generate(**model_input, **GEN_KWS)
decoded_out: str = adapter.tokenizer.decode(
model_output.sequences[0], skip_special_tokens=True)
model_clicks = adapter.parse(
image_paths, decoded_out, currently_selected)
if len(model_clicks) == 0:
logging.warning("empty clicks by model")
model_clicks = [image_paths[0]]
logging.debug(f"{image_paths=}")
logging.debug(f"selecting {model_clicks}")
prob = -1
else:
prob = -3
logging.debug(f"{prob=}")
logging.info(f"User input: {chat}")
logging.info(f"Model selected: {model_clicks}")
logging.debug(f"Model output: {decoded_out}")
return model_clicks
def get_model() -> PeftModel:
model_id = 'lil-lab/respect'
checkpoint = "HuggingFaceM4/idefics2-8b"
model = Idefics2ForConditionalGeneration.from_pretrained(
checkpoint, torch_dtype=torch.bfloat16,)
peft_model = PeftModel.from_pretrained(
model, model_id, adapter_name="r6_bp", is_trainable=False, revision="r6_bp")
# Add other adapter - hack to avoid conflict
lora_config = copy.deepcopy(peft_model.active_peft_config)
targets = list(set(n[:n.find('lora')-1] for n, _ in model.named_parameters()
if 'lora' in n))
lora_config.target_modules = targets
peft_model.add_adapter("r0", lora_config)
peft_model.load_adapter(model_id, "r0", is_trainable=False, revision="r0",
peft_config=lora_config)
return peft_model
def get_processor() -> Idefics2Processor:
checkpoint = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(
checkpoint, do_image_splitting=False,
size={"longest_edge": 224, "shortest_edge": 224})
return processor
def get_adapter() -> IdeficsAdapter:
processor = get_processor()
return IdeficsAdapter(IMG_DIR, processor)
### Game logic
@dataclasses.dataclass(frozen=False)
class GameState:
config: GameConfig
adapter_name: str
chats: List[str]
currently_selected: List[str]
selected_accum: List[List[str]]
clicks_accum: List[List[str]]
turn: int = 0
def has_ended(self):
return self.has_successfully_ended() or self.turn >= 10
def has_successfully_ended(self):
return set(self.currently_selected) == set(self.config.targets)
### UI helpers
def serialize_conversation(self):
output = [f"Turn {i+1}: {message}"
for i, message in enumerate(self.chats)]
return "\n".join(output)
def markup_images(self):
context = self.config.speaker_context
targets = self.config.targets
selected = self.currently_selected
changes = self.selected_accum[-1] if len(self.selected_accum) > 0 else []
tangram_list = self._display_context(context, targets, changes, selected)
return tangram_list
@staticmethod
def _display_context(context: List[str], targets: List[str],
changes: List[str], selected: List[str]) -> List[Image.Image]:
tangram_list: List[Image.Image] = []
arrow = Image.open("yellow_circle.png").resize((20, 20)).convert("RGBA")
for img in context:
image = Image.open(os.path.join(IMG_DIR, img)).resize((60, 60)).convert("RGB")
image = ImageOps.expand(image, border=2, fill="white")
if img in targets and img in selected: # listener selected a target image
image = ImageOps.expand(image, border=10, fill="green")
elif img in targets and img not in selected: # unselected target:
image = ImageOps.expand(image, border=10, fill="black")
elif img in selected and img not in targets: # listener selected a wrong image
image = ImageOps.expand(image, border=10, fill="red")
else:
image = ImageOps.expand(image, border=10, fill="white")
image = ImageOps.expand(image, border=2, fill="white")
if img in changes:
image.paste(arrow, (68, 0), mask=arrow)
tangram_list.append(image)
return tangram_list
class GameFlow:
@classmethod
def initialize(cls, model_iteration: str) -> GameState:
config = generate_game_config()
adapter_name = "r0" if model_iteration == "Initial System" else "r6_bp"
state = GameState(
config=config,
adapter_name=adapter_name,
chats=[],
currently_selected=[],
selected_accum=[],
clicks_accum=[],
turn=0,
)
return state
@classmethod
def progress(cls, state: GameState, chat: str,
model: PeftModel,
adapter: IdeficsAdapter) -> GameState:
turn = state.turn
model_context_images = state.config.listener_context
model_clicks = get_model_response(
model, state.adapter_name, adapter,
model_context_images, chat,
state.chats, state.selected_accum
)
# symmetric difference (apply deselection, then selection)
currently_selected2 = sorted_list(
(set(state.currently_selected) - set(model_clicks)) \
| (set(model_clicks) - set(state.currently_selected))
)
state2 = GameState(
# constants
config=state.config,
adapter_name=state.adapter_name,
# updates
chats=state.chats.copy() + [chat],
currently_selected=currently_selected2,
selected_accum=state.selected_accum.copy() + [currently_selected2],
clicks_accum=state.clicks_accum.copy() + [model_clicks],
turn=turn+1,
)
return state2
### UI
def create_app_inner():
### layout
gr.Markdown("# Tangram Multi-Reference Game")
gr.Markdown(
'### You will be playing a multi-reference games against a model. \
To start a game, first select whether you wish to play against our \
initial trained model ("Initial System") or \
our model at the end of continual learning ("Final System") \
and press the "Start Game" button.')
gr.Markdown(
'You will take on a "speaker" role at each round. \
Your goal is to describe this image (via a message in the textbox) \
so that the model can guess what it is.\
Targets have black borders. \
Correctly selected targets have green borders. \
Incorrectly selected targets have red borders. \
Actions are marked with yellow dot. \
The listener cannot see boxes or colors and the order is different.')
gr.Markdown(
'### Press "Send" to submit your action to proceed to the next turn. \
You have 10 turns in total.')
with gr.Row():
model_iteration = gr.Radio(["Initial System", "Final System"],
label="Model Iteration",
value="Final System")
start_btn = gr.Button("Start Game")
status = gr.Textbox(label="Status", interactive=False, show_label=False,
text_align="center", value="Please start a game.")
with gr.Row():
image_output = gr.Gallery(
label="CONTEXT", show_label=False, elem_id="gallery",
columns=5, rows=2, object_fit="contain", height="250px",
allow_preview=False, container=True, interactive=False
)
with gr.Row():
conversation_output = gr.Textbox(label="Interaction History")
with gr.Column():
user_input = gr.Textbox(label="Your Message as Speaker", interactive=True)
send_btn = gr.Button("Send", interactive=True)
### globals
model = get_model()
adapter = get_adapter()
game_state = gr.State(value=None)
### callbacks
def output_from_state(state: GameState):
has_ended = state.has_ended()
success = "Success" if state.has_successfully_ended() else "Failure"
status = f"{success} (Turn {state.turn}/10) - Start another game?" \
if has_ended else f"Turn {state.turn+1}/10"
return (
state.markup_images(), # image_output
state.serialize_conversation(), # conversation_output
status, # status
gr.update(interactive=not has_ended, value=""), # user_input
gr.update(interactive=not has_ended), # send_btn
gr.update(interactive=has_ended), # model_iteration
state, # game_history
)
def on_start_interaction(model_iteration: str):
assert model_iteration in ["Initial System", "Final System"]
state = GameFlow.initialize(model_iteration)
return output_from_state(state)
def on_send_message(message: str, state: GameState):
nonlocal model
nonlocal adapter
if message.strip() == "":
logging.info("Empty message")
return output_from_state(state)
state = GameFlow.progress(state, message, model, adapter)
return output_from_state(state)
start_btn.click(
on_start_interaction,
inputs=[model_iteration],
outputs=[image_output, conversation_output, status,
user_input, send_btn, model_iteration, game_state],
queue=False
)
send_btn.click(
on_send_message,
inputs=[user_input, game_state],
outputs=[image_output, conversation_output, status,
user_input, send_btn, model_iteration, game_state],
queue=True
)
def create_app():
with gr.Blocks(theme='saq1b/gradio-theme') as app:
create_app_inner()
return app
if __name__ == "__main__":
app = create_app()
app.queue()
app.launch()