File size: 1,106 Bytes
0d5acf9
 
 
5056593
0d5acf9
 
 
 
 
 
 
 
5056593
0d5acf9
 
 
5056593
0d5acf9
 
 
 
 
6425640
 
c5fed56
3dd905b
 
 
5056593
0d5acf9
3dd905b
 
 
 
 
6425640
3dd905b
 
0d5acf9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# AUTOGENERATED! DO NOT EDIT! File to edit: model-test.ipynb.

# %% auto 0
__all__ = ['plt', 'learn', 'categories', 'description', 'image', 'label', 'examples', 'iface', 'classify_image']

# %% model-test.ipynb 2
from fastai.vision.all import *
import pathlib
import gradio as gr
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath



# %% model-test.ipynb 7
learn = load_learner(Path('./resnet18-albani.pkl'))
categories = ('God Øl', 'Dårlig Øl')

def classify_image(img):
  pred,idx,probs = learn.predict(img)
  return dict(zip(categories, map(float, probs)))

description = """
  ## Er du i tvivl om at den øl du sidder med i hånden lige, nu er god?
  ### Tvivl ej 68 års invotation inden for machine learning skal nok fortælle dig om øllen er god eller ej
"""
image = gr.Image(shape=(192, 192))
label = gr.Label()
examples = ['albani.jpg', 'albani2.jpg', 'albani3.jpg', 'heineken.jpg', 'carlsberg.jpg']

iface = gr.Interface(
  fn=classify_image, 
  inputs=image, 
  outputs=label, 
  examples=examples, 
  description=description,
)

iface.launch(inline=False)