File size: 11,555 Bytes
973a4da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb3b5a
973a4da
 
1cb3b5a
 
 
 
 
973a4da
 
 
5b6e083
973a4da
 
 
944e312
7e9d843
944e312
ae2da92
 
 
 
 
 
 
944e312
 
7e9d843
944e312
 
 
 
973a4da
895260d
5b6e083
944e312
973a4da
 
4098d00
 
 
 
 
 
ae2da92
 
 
 
 
 
 
 
 
 
 
 
4098d00
973a4da
 
ae2da92
973a4da
 
 
 
1cb3b5a
973a4da
 
 
 
 
 
 
944e312
973a4da
 
 
 
 
ae2da92
973a4da
944e312
78d8811
944e312
1cb3b5a
 
944e312
973a4da
944e312
ae2da92
1cb3b5a
944e312
1cb3b5a
ae2da92
944e312
4098d00
 
944e312
 
 
 
1cb3b5a
944e312
ae2da92
944e312
1cb3b5a
944e312
ae2da92
1cb3b5a
944e312
1cb3b5a
4098d00
 
 
ae2da92
 
1cb3b5a
ae2da92
e79558d
 
 
 
 
895260d
 
 
 
 
 
 
 
 
 
ae2da92
 
 
895260d
 
 
 
 
 
 
ae2da92
944e312
 
 
 
 
 
 
 
 
 
 
 
973a4da
 
944e312
 
 
1cb3b5a
973a4da
944e312
 
 
 
 
 
 
 
 
 
 
 
 
1cb3b5a
944e312
 
ae2da92
 
 
 
 
 
 
 
 
 
 
 
 
1cb3b5a
 
 
 
 
 
 
 
 
944e312
973a4da
 
 
 
 
 
 
 
944e312
973a4da
 
944e312
4098d00
944e312
1cb3b5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
import pickle
import pandas as pd
import numpy as np
import random
import torch

from matplotlib.backends.backend_agg import RendererAgg

from backend.disentangle_concepts import *
import torch_utils
import dnnlib
import legacy

_lock = RendererAgg.lock


st.set_page_config(layout='wide')
BACKGROUND_COLOR = '#bcd0e7'
SECONDARY_COLOR = '#bce7db'


st.title('Disentanglement on Textile Datasets')
st.markdown(
    """
    This is a demo of the Disentanglement experiment on the [iMET Textiles Dataset](https://www.metmuseum.org/art/collection/search/85531).
    
    In this page, the user can adjust the colors of textile images generated by an AI by simply traversing the latent space of the AI. 
    The colors can be adjusted following the human-intuitive encoding of HSV, adjusting the main Hue of the image with an option of 7 colors + Gray,
    the saturation (the amount of Gray) and the value of the image (the amount of Black).
    """,
    unsafe_allow_html=False,)
    
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl'
with open(annotations_file, 'rb') as f:
    annotations = pickle.load(f)

concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')]
concept_vectors['score'] = concept_vectors['score'].astype(float)

concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']]
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']]
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']]
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']]
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']]

concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()

with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:
    model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore

COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink']

if 'image_id' not in st.session_state:
    st.session_state.image_id = 52921
if 'color_ids' not in st.session_state:
    st.session_state.concept_ids = COLORS_LIST[-1]
if 'space_id' not in st.session_state:
    st.session_state.space_id = 'W'
if 'color_lambda' not in st.session_state:
    st.session_state.color_lambda = 7
if 'saturation_lambda' not in st.session_state:
    st.session_state.saturation_lambda = 0
if 'value_lambda' not in st.session_state:
    st.session_state.value_lambda = 0
if 'sign' not in st.session_state:
    st.session_state.sign = False
if 'extremes' not in st.session_state:
    st.session_state.extremes = False
if 'regularization' not in st.session_state:
    st.session_state.regularization = False
if 'cl_method' not in st.session_state:
    st.session_state.cl_method = False
if 'num_factors' not in st.session_state:
    st.session_state.num_factors = False
if 'best' not in st.session_state:
    st.session_state.best = True
    
# ----------------------------- INPUT ----------------------------------
st.header('Input')
input_col_1, input_col_2, input_col_3, input_col_4 = st.columns(4)
# --------------------------- INPUT column 1 ---------------------------
with input_col_1:
   with st.form('image_form'):
        
        st.write('**Choose or generate a random base image**')
        chosen_image_id_input = st.empty()
        image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
        
        choose_image_button = st.form_submit_button('Choose the defined image')
        random_id = st.form_submit_button('Generate a random image')

        if random_id:
            image_id = random.randint(0, 100000)
            st.session_state.image_id = image_id
            chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
            
        if choose_image_button:
            image_id = int(image_id)
            st.session_state.image_id = image_id

with input_col_2:
    with st.form('text_form_1'):
        
        st.write('**Choose hue to vary**')
        type_col = st.selectbox('Hue:', tuple(COLORS_LIST), index=7)
        
        st.write('**Set range of change**')
        chosen_color_lambda_input = st.empty()
        color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value=-100, step=1, value=7)
        color_lambda_button = st.form_submit_button('Choose the defined hue and lambda')
          
        if color_lambda_button:
            st.session_state.image_id = image_id
            st.session_state.concept_ids = type_col
            st.session_state.color_lambda = color_lambda
            
        
with input_col_3:
    with st.form('text_form'):
        
        st.write('**Choose saturation variation**')
        chosen_saturation_lambda_input = st.empty()
        saturation_lambda = chosen_saturation_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=0, value=0)
        
        st.write('**Choose value variation**')
        chosen_value_lambda_input = st.empty()
        value_lambda = chosen_value_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=1, value=0)
        value_lambda_button = st.form_submit_button('Choose the defined lambda for value and saturation')
        
        if value_lambda_button:
            st.session_state.saturation_lambda = int(saturation_lambda)
            st.session_state.value_lambda = int(value_lambda)
            
with input_col_4:         
    with st.form('text_form_2'):
        st.write('Use the best vectors (after hyperparameter tuning)')
        best = st.selectbox('Option:', tuple([True, False]), index=0)
        sign = True
        num_factors=10
        cl_method='LR'
        regularization=0.1
        extremes=True
        if st.session_state.best is False:
            st.write('Options for StyleSpace (not available for Saturation and Value)')
            sign = st.selectbox('Sign option:', tuple([True, False]), index=1)
            num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4)
            st.write('Options for InterFaceGAN (not available for Saturation and Value)')
            cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2)
            regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2)
            st.write('Options for InterFaceGAN (only for Saturation and Value)')
            extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1)
            
        choose_options_button = st.form_submit_button('Choose the defined options')
        if choose_options_button:
            st.session_state.best = best
            if st.session_state.best is False:
                st.session_state.sign = sign
                st.session_state.num_factors = num_factors
                st.session_state.cl_method = cl_method
                st.session_state.regularization = regularization
                st.session_state.extremes = extremes
                
    
# with input_col_4:
#     with st.form('Network specifics:'):
#         st.write('**Choose a latent space to use**')
#         space_id = st.selectbox('Space:', tuple(['W']))
#         choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')

#         st.write('**Select hierarchical levels to manipulate**')
#         layers = st.multiselect('Layers:', tuple(range(14)))
#         if len(layers) == 0:
#             layers = None
#         print(layers)
#         layers_button = st.form_submit_button('Choose the defined layers')
        

# ---------------------------- SET UP OUTPUT ------------------------------
epsilon_container = st.empty()
st.header('Image Manipulation')
st.write('Using selected vectors to modify the original image...')

header_col_1, header_col_2 = st.columns([1,1])
output_col_1, output_col_2 = st.columns([1,1])

# # prediction error container
# error_container = st.empty()
# smoothgrad_header_container = st.empty()

# # smoothgrad container
# smooth_head_1, smooth_head_2,  = st.columns([1,1,])
# smoothgrad_col_1, smoothgrad_col_2 = st.columns([1,1])

# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
with header_col_1:
    st.write(f'### Original image')

with header_col_2:
    if st.session_state.best:
        color_separation_vector, performance_color = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids].reset_index().loc[0, ['vector', 'score']]
        saturation_separation_vector, performance_saturation = concept_vectors[concept_vectors['color'] == 'Saturation'].reset_index().loc[0, ['vector', 'score']]
        value_separation_vector, performance_value = concept_vectors[concept_vectors['color'] == 'Value'].reset_index().loc[0, ['vector', 'score']]
    else:
        tmp = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids]
        tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization]
        color_separation_vector, performance_color = tmp.reset_index().loc[0, ['vector', 'score']]
        tmp_value = concept_vectors[concept_vectors['color'] == 'Value'][concept_vectors['extremes'] == st.session_state.extremes]
        value_separation_vector, performance_value = tmp_value.reset_index().loc[0, ['vector', 'score']]
        tmp_sat = concept_vectors[concept_vectors['color'] == 'Saturation'][concept_vectors['extremes'] == st.session_state.extremes]
        saturation_separation_vector, performance_saturation = tmp_sat.reset_index().loc[0, ['vector', 'score']]
        
    st.write('### Modified image')
    st.write(f"""
            Change in hue: {st.session_state.concept_ids} of amount: {np.round(st.session_state.color_lambda, 2)}, 
            in: saturation of amount: {np.round(st.session_state.saturation_lambda, 2)}, 
            in: value of amount: {np.round(st.session_state.value_lambda, 2)}.\
            Verification performance of hue vector: {performance_color}, 
            saturation vector: {performance_saturation/100},
            value vector: {performance_value/100}""")
    
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------

if st.session_state.space_id == 'Z':
    original_image_vec = annotations['z_vectors'][st.session_state.image_id]
else:
    original_image_vec = annotations['w_vectors'][st.session_state.image_id]

img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)

with output_col_1:
    st.image(img)

with output_col_2:
    image_updated = generate_composite_images(model, original_image_vec, [color_separation_vector, saturation_separation_vector, value_separation_vector], lambdas=[st.session_state.color_lambda, st.session_state.saturation_lambda, st.session_state.value_lambda])
    st.image(image_updated)