Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as components | |
import dnnlib | |
import legacy | |
import pickle | |
import pandas as pd | |
import numpy as np | |
from pyvis.network import Network | |
import random | |
from sklearn.metrics.pairwise import cosine_similarity | |
from matplotlib.backends.backend_agg import RendererAgg | |
from backend.disentangle_concepts import * | |
_lock = RendererAgg.lock | |
HIGHTLIGHT_COLOR = '#e7bcc5' | |
st.set_page_config(layout='wide') | |
st.title('Comparison among concept vectors') | |
st.write('> **How do the concept vectors relate to each other?**') | |
st.write('> **What is their join impact on the image?**') | |
st.write("""Description to write""") | |
annotations_file = './data/vase_annotated_files/seeds0000-20000.pkl' | |
with open(annotations_file, 'rb') as f: | |
annotations = pickle.load(f) | |
if 'image_id' not in st.session_state: | |
st.session_state.image_id = 0 | |
if 'concept_ids' not in st.session_state: | |
st.session_state.concept_ids = ['Provenance ADRIA'] | |
if 'space_id' not in st.session_state: | |
st.session_state.space_id = 'Z' | |
if 'type_col' not in st.session_state: | |
st.session_state.type_col = 'Provenance' | |
# def on_change_random_input(): | |
# st.session_state.image_id = st.session_state.image_id | |
# ----------------------------- INPUT ---------------------------------- | |
st.header('Input') | |
input_col_1, input_col_2, input_col_3 = st.columns(3) | |
# --------------------------- INPUT column 1 --------------------------- | |
with input_col_1: | |
with st.form('text_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose two options to disentangle**') | |
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique'])) | |
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv') | |
labels = list(ann_df.columns) | |
labels.remove('ID') | |
labels.remove('Unnamed: 0') | |
concept_ids = st.multiselect('Concepts:', tuple(labels), default=[labels[2], labels[3]]) | |
st.write('**Choose a latent space to disentangle**') | |
# chosen_text_id_input = st.empty() | |
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id) | |
space_id = st.selectbox('Space:', tuple(['Z', 'W'])) | |
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle') | |
if choose_text_button: | |
st.session_state.concept_ids = list(concept_ids) | |
space_id = str(space_id) | |
st.session_state.space_id = space_id | |
st.session_state.type_col = type_col | |
# st.write(image_id, st.session_state.image_id) | |
# ---------------------------- SET UP OUTPUT ------------------------------ | |
epsilon_container = st.empty() | |
st.header('Output') | |
st.subheader('Concept vector') | |
# perform attack container | |
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1]) | |
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1]) | |
header_col_1, header_col_2 = st.columns([1,1]) | |
output_col_1, output_col_2 = st.columns([1,1]) | |
st.subheader('Derivations along the concept vector') | |
# prediction error container | |
error_container = st.empty() | |
smoothgrad_header_container = st.empty() | |
# smoothgrad container | |
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1]) | |
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1]) | |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------ | |
with output_col_1: | |
vectors, nodes_in_common, performances = get_concepts_vectors(concept_ids, annotations, ann_df, latent_space=space_id) | |
header_col_1.write(f'Concepts {", ".join(concept_ids)} - Latent space {space_id} - Relevant nodes in common: {nodes_in_common} - Performance of the concept vectors: {performances}')# - Nodes {",".join(list(imp_nodes))}') | |
edges = [] | |
for i in range(len(concept_ids)): | |
for j in range(len(concept_ids)): | |
if i != j: | |
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}') | |
similarity = cosine_similarity(vectors[i,:].reshape(1, -1), vectors[j,:].reshape(1, -1)) | |
print(np.round(similarity[0][0], 3)) | |
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0], 3))) | |
net = Network(height="750px", width="100%",) | |
for e in edges: | |
src = e[0] | |
dst = e[1] | |
w = e[2] | |
net.add_node(src, src, title=src) | |
net.add_node(dst, dst, title=dst) | |
net.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w)) | |
# Generate network with specific layout settings | |
net.repulsion( | |
node_distance=420, | |
central_gravity=0.33, | |
spring_length=110, | |
spring_strength=0.10, | |
damping=0.95 | |
) | |
# Save and read graph as HTML file (on Streamlit Sharing) | |
try: | |
path = '/tmp' | |
net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8') | |
# Save and read graph as HTML file (locally) | |
except: | |
path = '/html_files' | |
net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8') | |
# Load HTML file in HTML component for display on Streamlit page | |
components.html(HtmlFile.read(), height=435) | |
with output_col_2: | |
with open('data/CLIP_vecs_vases.pkl', 'rb') as f: | |
vectors_CLIP = pickle.load(f) | |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence') | |
#st.write('Concept vector', separation_vector) | |
header_col_2.write(f'Concepts {", ".join(concept_ids)} - Latent space CLIP')# - Nodes {",".join(list(imp_nodes))}') | |
edges_clip = [] | |
for c1 in concept_ids: | |
for c2 in concept_ids: | |
if c1 != c2: | |
print(f'Similarity between {c1} and {c2}') | |
similarity = cosine_similarity(vectors_CLIP[st.session_state.type_col + ' ' + c1].reshape(1, -1), vectors_CLIP[st.session_state.type_col + ' ' + c2].reshape(1, -1)) | |
print(np.round(similarity[0][0], 3)) | |
edges_clip.append((c1, c2, np.round(float(np.round(similarity[0][0], 3)), 3))) | |
net_clip = Network(height="750px", width="100%",) | |
for e in edges_clip: | |
src = e[0] | |
dst = e[1] | |
w = e[2] | |
net_clip.add_node(src, src, title=src) | |
net_clip.add_node(dst, dst, title=dst) | |
net_clip.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w)) | |
# Generate network with specific layout settings | |
net_clip.repulsion( | |
node_distance=420, | |
central_gravity=0.33, | |
spring_length=110, | |
spring_strength=0.10, | |
damping=0.95 | |
) | |
# Save and read graph as HTML file (on Streamlit Sharing) | |
try: | |
path = '/tmp' | |
net_clip.save_graph(f'{path}/pyvis_graph_clip.html') | |
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8') | |
# Save and read graph as HTML file (locally) | |
except: | |
path = '/html_files' | |
net_clip.save_graph(f'{path}/pyvis_graph_clip.html') | |
HtmlFile = open(f'{path}/pyvis_graph_clip.html', 'r', encoding='utf-8') | |
# Load HTML file in HTML component for display on Streamlit page | |
components.html(HtmlFile.read(), height=435) | |
# ----------------------------- INPUT column 2 & 3 ---------------------------- | |
with input_col_2: | |
with st.form('image_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose or generate a random image to test the disentanglement**') | |
chosen_image_id_input = st.empty() | |
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
choose_image_button = st.form_submit_button('Choose the defined image') | |
random_id = st.form_submit_button('Generate a random image') | |
if random_id: | |
image_id = random.randint(0, 50000) | |
st.session_state.image_id = image_id | |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
if choose_image_button: | |
image_id = int(image_id) | |
st.session_state.image_id = int(image_id) | |
# st.write(image_id, st.session_state.image_id) | |
with input_col_3: | |
with st.form('Variate along the disentangled concepts'): | |
st.write('**Set range of change**') | |
chosen_epsilon_input = st.empty() | |
epsilon = chosen_epsilon_input.number_input('Epsilon:', min_value=1, step=1) | |
epsilon_button = st.form_submit_button('Choose the defined epsilon') | |
# # ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------ | |
with dnnlib.util.open_url('./data/vase_model_files/network-snapshot-003800.pkl') as f: | |
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore | |
if st.session_state.space_id == 'Z': | |
original_image_vec = annotations['z_vectors'][st.session_state.image_id] | |
else: | |
original_image_vec = annotations['w_vectors'][st.session_state.image_id] | |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id) | |
# input_image = original_image_dict['image'] | |
# input_label = original_image_dict['label'] | |
# input_id = original_image_dict['id'] | |
with smoothgrad_col_3: | |
st.image(img) | |
smooth_head_3.write(f'Base image') | |
images, lambdas = generate_joint_effect(model, original_image_vec, vectors, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id) | |
with smoothgrad_col_1: | |
st.image(images[0]) | |
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}') | |
with smoothgrad_col_2: | |
st.image(images[1]) | |
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}') | |
with smoothgrad_col_4: | |
st.image(images[3]) | |
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}') | |
with smoothgrad_col_5: | |
st.image(images[4]) | |
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}') | |