Spaces:
Runtime error
Runtime error
labels no id or unnamed
Browse files
pages/3_Oxford_Vases_Disentanglement.py
CHANGED
@@ -54,9 +54,11 @@ with input_col_1:
|
|
54 |
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
|
55 |
|
56 |
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
|
57 |
-
labels = ann_df.columns
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
st.write('**Choose a latent space to disentangle**')
|
62 |
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
|
@@ -93,7 +95,7 @@ smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgr
|
|
93 |
|
94 |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
95 |
with output_col_1:
|
96 |
-
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=
|
97 |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
98 |
st.write('Concept vector', separation_vector)
|
99 |
header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
|
@@ -146,8 +148,8 @@ else:
|
|
146 |
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
147 |
|
148 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
149 |
-
|
150 |
-
top_pred = ann_df.loc[st.session_state.image_id,
|
151 |
# input_image = original_image_dict['image']
|
152 |
# input_label = original_image_dict['label']
|
153 |
# input_id = original_image_dict['id']
|
|
|
54 |
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
|
55 |
|
56 |
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
|
57 |
+
labels = list(ann_df.columns)
|
58 |
+
labels.remove('ID')
|
59 |
+
labels.remove('Unnamed: 0')
|
60 |
+
|
61 |
+
concept_ids = st.multiselect('Concepts:', tuple(labels), max_selections=2, default=[labels[2], labels[3]])
|
62 |
|
63 |
st.write('**Choose a latent space to disentangle**')
|
64 |
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
|
|
|
95 |
|
96 |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
97 |
with output_col_1:
|
98 |
+
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=150)
|
99 |
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
100 |
st.write('Concept vector', separation_vector)
|
101 |
header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
|
|
|
148 |
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
149 |
|
150 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
151 |
+
|
152 |
+
top_pred = ann_df.loc[st.session_state.image_id, labels].astype(float).idxmax()
|
153 |
# input_image = original_image_dict['image']
|
154 |
# input_label = original_image_dict['label']
|
155 |
# input_id = original_image_dict['id']
|