AutoIOL-ai / app.py
luigi12345's picture
Update app.py
a0f004d verified
import gradio as gr
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image
import numpy as np
from datetime import datetime
import os
def array_to_image_path(image_array):
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto"
).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
@gr.GPU
def analyze_iol_report(image):
image_path = array_to_image_path(image)
prompt = "Extract all ophthalmic measurements including AL, K1, K2, ACD, LT, WTW, and CCT. Calculate IOL power based on formulas like Barrett Universal II, Cooke K6, EVO, Hill-RBF, Hoffer QST, Kane, and PEARL GDS."
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image_path},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("Fixed Model - Qwen2-VL-7B for IOL Report Analysis")
with gr.Tab(label="IOL Analysis"):
with gr.Row():
input_img = gr.Image(label="Upload IOL Report Image")
submit_btn = gr.Button(value="Analyze Report")
output = gr.Textbox(label="Analysis Result", elem_id="output")
submit_btn.click(analyze_iol_report, inputs=[input_img], outputs=[output])
demo.launch()