Spaces:
Runtime error
Runtime error
/****************************************************************************** | |
* Copyright (c) 2011, Duane Merrill. All rights reserved. | |
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* * Neither the name of the NVIDIA CORPORATION nor the | |
* names of its contributors may be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
******************************************************************************/ | |
/** | |
* \file | |
* The cub::WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. | |
*/ | |
#pragma once | |
#include "../config.cuh" | |
#include "specializations/warp_reduce_shfl.cuh" | |
#include "specializations/warp_reduce_smem.cuh" | |
#include "../thread/thread_operators.cuh" | |
#include "../util_type.cuh" | |
/// Optional outer namespace(s) | |
CUB_NS_PREFIX | |
/// CUB namespace | |
namespace cub { | |
/** | |
* \addtogroup WarpModule | |
* @{ | |
*/ | |
/** | |
* \brief The WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. ![](warp_reduce_logo.png) | |
* | |
* \tparam T The reduction input/output element type | |
* \tparam LOGICAL_WARP_THREADS <b>[optional]</b> The number of threads per "logical" warp (may be less than the number of hardware warp threads). Default is the warp size of the targeted CUDA compute-capability (e.g., 32 threads for SM20). | |
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion | |
* | |
* \par Overview | |
* - A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>) | |
* uses a binary combining operator to compute a single aggregate from a list of input elements. | |
* - Supports "logical" warps smaller than the physical warp size (e.g., logical warps of 8 threads) | |
* - The number of entrant threads must be an multiple of \p LOGICAL_WARP_THREADS | |
* | |
* \par Performance Considerations | |
* - Uses special instructions when applicable (e.g., warp \p SHFL instructions) | |
* - Uses synchronization-free communication between warp lanes when applicable | |
* - Incurs zero bank conflicts for most types | |
* - Computation is slightly more efficient (i.e., having lower instruction overhead) for: | |
* - Summation (<b><em>vs.</em></b> generic reduction) | |
* - The architecture's warp size is a whole multiple of \p LOGICAL_WARP_THREADS | |
* | |
* \par Simple Examples | |
* \warpcollective{WarpReduce} | |
* \par | |
* The code snippet below illustrates four concurrent warp sum reductions within a block of | |
* 128 threads (one per each of the 32-thread warps). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for 4 warps | |
* __shared__ typename WarpReduce::TempStorage temp_storage[4]; | |
* | |
* // Obtain one input item per thread | |
* int thread_data = ... | |
* | |
* // Return the warp-wide sums to each lane0 (threads 0, 32, 64, and 96) | |
* int warp_id = threadIdx.x / 32; | |
* int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>. | |
* The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520, | |
* \p 2544, and \p 3568, respectively (and is undefined in other threads). | |
* | |
* \par | |
* The code snippet below illustrates a single warp sum reduction within a block of | |
* 128 threads. | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* ... | |
* | |
* // Only the first warp performs a reduction | |
* if (threadIdx.x < 32) | |
* { | |
* // Obtain one input item per thread | |
* int thread_data = ... | |
* | |
* // Return the warp-wide sum to lane0 | |
* int aggregate = WarpReduce(temp_storage).Sum(thread_data); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data across the warp of threads is <tt>{0, 1, 2, 3, ..., 31}</tt>. | |
* The corresponding output \p aggregate in thread0 will be \p 496 (and is undefined in other threads). | |
* | |
*/ | |
template < | |
typename T, | |
int LOGICAL_WARP_THREADS = CUB_PTX_WARP_THREADS, | |
int PTX_ARCH = CUB_PTX_ARCH> | |
class WarpReduce | |
{ | |
private: | |
/****************************************************************************** | |
* Constants and type definitions | |
******************************************************************************/ | |
enum | |
{ | |
/// Whether the logical warp size and the PTX warp size coincide | |
IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)), | |
/// Whether the logical warp size is a power-of-two | |
IS_POW_OF_TWO = PowerOfTwo<LOGICAL_WARP_THREADS>::VALUE, | |
}; | |
public: | |
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document | |
/// Internal specialization. Use SHFL-based reduction if (architecture is >= SM30) and (LOGICAL_WARP_THREADS is a power-of-two) | |
typedef typename If<(PTX_ARCH >= 300) && (IS_POW_OF_TWO), | |
WarpReduceShfl<T, LOGICAL_WARP_THREADS, PTX_ARCH>, | |
WarpReduceSmem<T, LOGICAL_WARP_THREADS, PTX_ARCH> >::Type InternalWarpReduce; | |
#endif // DOXYGEN_SHOULD_SKIP_THIS | |
private: | |
/// Shared memory storage layout type for WarpReduce | |
typedef typename InternalWarpReduce::TempStorage _TempStorage; | |
/****************************************************************************** | |
* Thread fields | |
******************************************************************************/ | |
/// Shared storage reference | |
_TempStorage &temp_storage; | |
/****************************************************************************** | |
* Utility methods | |
******************************************************************************/ | |
public: | |
/// \smemstorage{WarpReduce} | |
struct TempStorage : Uninitialized<_TempStorage> {}; | |
/******************************************************************//** | |
* \name Collective constructors | |
*********************************************************************/ | |
//@{ | |
/** | |
* \brief Collective constructor using the specified memory allocation as temporary storage. Logical warp and lane identifiers are constructed from <tt>threadIdx.x</tt>. | |
*/ | |
__device__ __forceinline__ WarpReduce( | |
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage | |
: | |
temp_storage(temp_storage.Alias()) | |
{} | |
//@} end member group | |
/******************************************************************//** | |
* \name Summation reductions | |
*********************************************************************/ | |
//@{ | |
/** | |
* \brief Computes a warp-wide sum in the calling warp. The output is valid in warp <em>lane</em><sub>0</sub>. | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates four concurrent warp sum reductions within a block of | |
* 128 threads (one per each of the 32-thread warps). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for 4 warps | |
* __shared__ typename WarpReduce::TempStorage temp_storage[4]; | |
* | |
* // Obtain one input item per thread | |
* int thread_data = ... | |
* | |
* // Return the warp-wide sums to each lane0 | |
* int warp_id = threadIdx.x / 32; | |
* int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>. | |
* The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520, | |
* \p 2544, and \p 3568, respectively (and is undefined in other threads). | |
* | |
*/ | |
__device__ __forceinline__ T Sum( | |
T input) ///< [in] Calling thread's input | |
{ | |
return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, cub::Sum()); | |
} | |
/** | |
* \brief Computes a partially-full warp-wide sum in the calling warp. The output is valid in warp <em>lane</em><sub>0</sub>. | |
* | |
* All threads across the calling warp must agree on the same value for \p valid_items. Otherwise the result is undefined. | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a sum reduction within a single, partially-full | |
* block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(int *d_data, int valid_items) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item per thread if in range | |
* int thread_data; | |
* if (threadIdx.x < valid_items) | |
* thread_data = d_data[threadIdx.x]; | |
* | |
* // Return the warp-wide sums to each lane0 | |
* int aggregate = WarpReduce(temp_storage).Sum( | |
* thread_data, valid_items); | |
* | |
* \endcode | |
* \par | |
* Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items | |
* is \p 4. The corresponding output \p aggregate in thread0 is \p 6 (and is | |
* undefined in other threads). | |
* | |
*/ | |
__device__ __forceinline__ T Sum( | |
T input, ///< [in] Calling thread's input | |
int valid_items) ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS) | |
{ | |
// Determine if we don't need bounds checking | |
return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, cub::Sum()); | |
} | |
/** | |
* \brief Computes a segmented sum in the calling warp where segments are defined by head-flags. The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>). | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a head-segmented warp sum | |
* reduction within a block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item and flag per thread | |
* int thread_data = ... | |
* int head_flag = ... | |
* | |
* // Return the warp-wide sums to each lane0 | |
* int aggregate = WarpReduce(temp_storage).HeadSegmentedSum( | |
* thread_data, head_flag); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data and \p head_flag across the block of threads | |
* is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>, | |
* respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be | |
* \p 6, \p 22, \p 38, etc. (and is undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
* | |
*/ | |
template < | |
typename FlagT> | |
__device__ __forceinline__ T HeadSegmentedSum( | |
T input, ///< [in] Calling thread's input | |
FlagT head_flag) ///< [in] Head flag denoting whether or not \p input is the start of a new segment | |
{ | |
return HeadSegmentedReduce(input, head_flag, cub::Sum()); | |
} | |
/** | |
* \brief Computes a segmented sum in the calling warp where segments are defined by tail-flags. The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>). | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a tail-segmented warp sum | |
* reduction within a block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item and flag per thread | |
* int thread_data = ... | |
* int tail_flag = ... | |
* | |
* // Return the warp-wide sums to each lane0 | |
* int aggregate = WarpReduce(temp_storage).TailSegmentedSum( | |
* thread_data, tail_flag); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data and \p tail_flag across the block of threads | |
* is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>, | |
* respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be | |
* \p 6, \p 22, \p 38, etc. (and is undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
*/ | |
template < | |
typename FlagT> | |
__device__ __forceinline__ T TailSegmentedSum( | |
T input, ///< [in] Calling thread's input | |
FlagT tail_flag) ///< [in] Head flag denoting whether or not \p input is the start of a new segment | |
{ | |
return TailSegmentedReduce(input, tail_flag, cub::Sum()); | |
} | |
//@} end member group | |
/******************************************************************//** | |
* \name Generic reductions | |
*********************************************************************/ | |
//@{ | |
/** | |
* \brief Computes a warp-wide reduction in the calling warp using the specified binary reduction functor. The output is valid in warp <em>lane</em><sub>0</sub>. | |
* | |
* Supports non-commutative reduction operators | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates four concurrent warp max reductions within a block of | |
* 128 threads (one per each of the 32-thread warps). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for 4 warps | |
* __shared__ typename WarpReduce::TempStorage temp_storage[4]; | |
* | |
* // Obtain one input item per thread | |
* int thread_data = ... | |
* | |
* // Return the warp-wide reductions to each lane0 | |
* int warp_id = threadIdx.x / 32; | |
* int aggregate = WarpReduce(temp_storage[warp_id]).Reduce( | |
* thread_data, cub::Max()); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>. | |
* The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 31, \p 63, | |
* \p 95, and \p 127, respectively (and is undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
*/ | |
template <typename ReductionOp> | |
__device__ __forceinline__ T Reduce( | |
T input, ///< [in] Calling thread's input | |
ReductionOp reduction_op) ///< [in] Binary reduction operator | |
{ | |
return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, reduction_op); | |
} | |
/** | |
* \brief Computes a partially-full warp-wide reduction in the calling warp using the specified binary reduction functor. The output is valid in warp <em>lane</em><sub>0</sub>. | |
* | |
* All threads across the calling warp must agree on the same value for \p valid_items. Otherwise the result is undefined. | |
* | |
* Supports non-commutative reduction operators | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a max reduction within a single, partially-full | |
* block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(int *d_data, int valid_items) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item per thread if in range | |
* int thread_data; | |
* if (threadIdx.x < valid_items) | |
* thread_data = d_data[threadIdx.x]; | |
* | |
* // Return the warp-wide reductions to each lane0 | |
* int aggregate = WarpReduce(temp_storage).Reduce( | |
* thread_data, cub::Max(), valid_items); | |
* | |
* \endcode | |
* \par | |
* Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items | |
* is \p 4. The corresponding output \p aggregate in thread0 is \p 3 (and is | |
* undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
*/ | |
template <typename ReductionOp> | |
__device__ __forceinline__ T Reduce( | |
T input, ///< [in] Calling thread's input | |
ReductionOp reduction_op, ///< [in] Binary reduction operator | |
int valid_items) ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS) | |
{ | |
return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, reduction_op); | |
} | |
/** | |
* \brief Computes a segmented reduction in the calling warp where segments are defined by head-flags. The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>). | |
* | |
* Supports non-commutative reduction operators | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a head-segmented warp max | |
* reduction within a block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item and flag per thread | |
* int thread_data = ... | |
* int head_flag = ... | |
* | |
* // Return the warp-wide reductions to each lane0 | |
* int aggregate = WarpReduce(temp_storage).HeadSegmentedReduce( | |
* thread_data, head_flag, cub::Max()); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data and \p head_flag across the block of threads | |
* is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>, | |
* respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be | |
* \p 3, \p 7, \p 11, etc. (and is undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
*/ | |
template < | |
typename ReductionOp, | |
typename FlagT> | |
__device__ __forceinline__ T HeadSegmentedReduce( | |
T input, ///< [in] Calling thread's input | |
FlagT head_flag, ///< [in] Head flag denoting whether or not \p input is the start of a new segment | |
ReductionOp reduction_op) ///< [in] Reduction operator | |
{ | |
return InternalWarpReduce(temp_storage).template SegmentedReduce<true>(input, head_flag, reduction_op); | |
} | |
/** | |
* \brief Computes a segmented reduction in the calling warp where segments are defined by tail-flags. The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>). | |
* | |
* Supports non-commutative reduction operators | |
* | |
* \smemreuse | |
* | |
* \par Snippet | |
* The code snippet below illustrates a tail-segmented warp max | |
* reduction within a block of 32 threads (one warp). | |
* \par | |
* \code | |
* #include <cub/cub.cuh> | |
* | |
* __global__ void ExampleKernel(...) | |
* { | |
* // Specialize WarpReduce for type int | |
* typedef cub::WarpReduce<int> WarpReduce; | |
* | |
* // Allocate WarpReduce shared memory for one warp | |
* __shared__ typename WarpReduce::TempStorage temp_storage; | |
* | |
* // Obtain one input item and flag per thread | |
* int thread_data = ... | |
* int tail_flag = ... | |
* | |
* // Return the warp-wide reductions to each lane0 | |
* int aggregate = WarpReduce(temp_storage).TailSegmentedReduce( | |
* thread_data, tail_flag, cub::Max()); | |
* | |
* \endcode | |
* \par | |
* Suppose the set of input \p thread_data and \p tail_flag across the block of threads | |
* is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>, | |
* respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be | |
* \p 3, \p 7, \p 11, etc. (and is undefined in other threads). | |
* | |
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> | |
*/ | |
template < | |
typename ReductionOp, | |
typename FlagT> | |
__device__ __forceinline__ T TailSegmentedReduce( | |
T input, ///< [in] Calling thread's input | |
FlagT tail_flag, ///< [in] Tail flag denoting whether or not \p input is the end of the current segment | |
ReductionOp reduction_op) ///< [in] Reduction operator | |
{ | |
return InternalWarpReduce(temp_storage).template SegmentedReduce<false>(input, tail_flag, reduction_op); | |
} | |
//@} end member group | |
}; | |
/** @} */ // end group WarpModule | |
} // CUB namespace | |
CUB_NS_POSTFIX // Optional outer namespace(s) | |