LIVE / thrust /cub /block /block_radix_sort.cuh
Xu Ma
update
1c3c0d9
raw
history blame
38.3 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockRadixSort class provides [<em>collective</em>](index.html#sec0) methods for radix sorting of items partitioned across a CUDA thread block.
*/
#pragma once
#include "block_exchange.cuh"
#include "block_radix_rank.cuh"
#include "../config.cuh"
#include "../util_ptx.cuh"
#include "../util_type.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief The BlockRadixSort class provides [<em>collective</em>](index.html#sec0) methods for sorting items partitioned across a CUDA thread block using a radix sorting method. ![](sorting_logo.png)
* \ingroup BlockModule
*
* \tparam KeyT KeyT type
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of items per thread
* \tparam ValueT <b>[optional]</b> ValueT type (default: cub::NullType, which indicates a keys-only sort)
* \tparam RADIX_BITS <b>[optional]</b> The number of radix bits per digit place (default: 4 bits)
* \tparam MEMOIZE_OUTER_SCAN <b>[optional]</b> Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure (default: true for architectures SM35 and newer, false otherwise).
* \tparam INNER_SCAN_ALGORITHM <b>[optional]</b> The cub::BlockScanAlgorithm algorithm to use (default: cub::BLOCK_SCAN_WARP_SCANS)
* \tparam SMEM_CONFIG <b>[optional]</b> Shared memory bank mode (default: \p cudaSharedMemBankSizeFourByte)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - The [<em>radix sorting method</em>](http://en.wikipedia.org/wiki/Radix_sort) arranges
* items into ascending order. It relies upon a positional representation for
* keys, i.e., each key is comprised of an ordered sequence of symbols (e.g., digits,
* characters, etc.) specified from least-significant to most-significant. For a
* given input sequence of keys and a set of rules specifying a total ordering
* of the symbolic alphabet, the radix sorting method produces a lexicographic
* ordering of those keys.
* - BlockRadixSort can sort all of the built-in C++ numeric primitive types
* (<tt>unsigned char</tt>, \p int, \p double, etc.) as well as CUDA's \p __half
* half-precision floating-point type. Within each key, the implementation treats fixed-length
* bit-sequences of \p RADIX_BITS as radix digit places. Although the direct radix sorting
* method can only be applied to unsigned integral types, BlockRadixSort
* is able to sort signed and floating-point types via simple bit-wise transformations
* that ensure lexicographic key ordering.
* - \rowmajor
*
* \par Performance Considerations
* - \granularity
*
* \par A Simple Example
* \blockcollective{BlockRadixSort}
* \par
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* ...
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*
*/
template <
typename KeyT,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
typename ValueT = NullType,
int RADIX_BITS = 4,
bool MEMOIZE_OUTER_SCAN = (CUB_PTX_ARCH >= 350) ? true : false,
BlockScanAlgorithm INNER_SCAN_ALGORITHM = BLOCK_SCAN_WARP_SCANS,
cudaSharedMemConfig SMEM_CONFIG = cudaSharedMemBankSizeFourByte,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockRadixSort
{
private:
/******************************************************************************
* Constants and type definitions
******************************************************************************/
enum
{
// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
// Whether or not there are values to be trucked along with keys
KEYS_ONLY = Equals<ValueT, NullType>::VALUE,
};
// KeyT traits and unsigned bits type
typedef Traits<KeyT> KeyTraits;
typedef typename KeyTraits::UnsignedBits UnsignedBits;
/// Ascending BlockRadixRank utility type
typedef BlockRadixRank<
BLOCK_DIM_X,
RADIX_BITS,
false,
MEMOIZE_OUTER_SCAN,
INNER_SCAN_ALGORITHM,
SMEM_CONFIG,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
AscendingBlockRadixRank;
/// Descending BlockRadixRank utility type
typedef BlockRadixRank<
BLOCK_DIM_X,
RADIX_BITS,
true,
MEMOIZE_OUTER_SCAN,
INNER_SCAN_ALGORITHM,
SMEM_CONFIG,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
DescendingBlockRadixRank;
/// BlockExchange utility type for keys
typedef BlockExchange<KeyT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchangeKeys;
/// BlockExchange utility type for values
typedef BlockExchange<ValueT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchangeValues;
/// Shared memory storage layout type
union _TempStorage
{
typename AscendingBlockRadixRank::TempStorage asending_ranking_storage;
typename DescendingBlockRadixRank::TempStorage descending_ranking_storage;
typename BlockExchangeKeys::TempStorage exchange_keys;
typename BlockExchangeValues::TempStorage exchange_values;
};
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/// Rank keys (specialized for ascending sort)
__device__ __forceinline__ void RankKeys(
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
int begin_bit,
int pass_bits,
Int2Type<false> /*is_descending*/)
{
AscendingBlockRadixRank(temp_storage.asending_ranking_storage).RankKeys(
unsigned_keys,
ranks,
begin_bit,
pass_bits);
}
/// Rank keys (specialized for descending sort)
__device__ __forceinline__ void RankKeys(
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
int begin_bit,
int pass_bits,
Int2Type<true> /*is_descending*/)
{
DescendingBlockRadixRank(temp_storage.descending_ranking_storage).RankKeys(
unsigned_keys,
ranks,
begin_bit,
pass_bits);
}
/// ExchangeValues (specialized for key-value sort, to-blocked arrangement)
__device__ __forceinline__ void ExchangeValues(
ValueT (&values)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
Int2Type<false> /*is_keys_only*/,
Int2Type<true> /*is_blocked*/)
{
CTA_SYNC();
// Exchange values through shared memory in blocked arrangement
BlockExchangeValues(temp_storage.exchange_values).ScatterToBlocked(values, ranks);
}
/// ExchangeValues (specialized for key-value sort, to-striped arrangement)
__device__ __forceinline__ void ExchangeValues(
ValueT (&values)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
Int2Type<false> /*is_keys_only*/,
Int2Type<false> /*is_blocked*/)
{
CTA_SYNC();
// Exchange values through shared memory in blocked arrangement
BlockExchangeValues(temp_storage.exchange_values).ScatterToStriped(values, ranks);
}
/// ExchangeValues (specialized for keys-only sort)
template <int IS_BLOCKED>
__device__ __forceinline__ void ExchangeValues(
ValueT (&/*values*/)[ITEMS_PER_THREAD],
int (&/*ranks*/)[ITEMS_PER_THREAD],
Int2Type<true> /*is_keys_only*/,
Int2Type<IS_BLOCKED> /*is_blocked*/)
{}
/// Sort blocked arrangement
template <int DESCENDING, int KEYS_ONLY>
__device__ __forceinline__ void SortBlocked(
KeyT (&keys)[ITEMS_PER_THREAD], ///< Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< Values to sort
int begin_bit, ///< The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< The past-the-end (most-significant) bit index needed for key comparison
Int2Type<DESCENDING> is_descending, ///< Tag whether is a descending-order sort
Int2Type<KEYS_ONLY> is_keys_only) ///< Tag whether is keys-only sort
{
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD] =
reinterpret_cast<UnsignedBits (&)[ITEMS_PER_THREAD]>(keys);
// Twiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleIn(unsigned_keys[KEY]);
}
// Radix sorting passes
while (true)
{
int pass_bits = CUB_MIN(RADIX_BITS, end_bit - begin_bit);
// Rank the blocked keys
int ranks[ITEMS_PER_THREAD];
RankKeys(unsigned_keys, ranks, begin_bit, pass_bits, is_descending);
begin_bit += RADIX_BITS;
CTA_SYNC();
// Exchange keys through shared memory in blocked arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToBlocked(keys, ranks);
// Exchange values through shared memory in blocked arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<true>());
// Quit if done
if (begin_bit >= end_bit) break;
CTA_SYNC();
}
// Untwiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleOut(unsigned_keys[KEY]);
}
}
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
/// Sort blocked -> striped arrangement
template <int DESCENDING, int KEYS_ONLY>
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< Values to sort
int begin_bit, ///< The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< The past-the-end (most-significant) bit index needed for key comparison
Int2Type<DESCENDING> is_descending, ///< Tag whether is a descending-order sort
Int2Type<KEYS_ONLY> is_keys_only) ///< Tag whether is keys-only sort
{
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD] =
reinterpret_cast<UnsignedBits (&)[ITEMS_PER_THREAD]>(keys);
// Twiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleIn(unsigned_keys[KEY]);
}
// Radix sorting passes
while (true)
{
int pass_bits = CUB_MIN(RADIX_BITS, end_bit - begin_bit);
// Rank the blocked keys
int ranks[ITEMS_PER_THREAD];
RankKeys(unsigned_keys, ranks, begin_bit, pass_bits, is_descending);
begin_bit += RADIX_BITS;
CTA_SYNC();
// Check if this is the last pass
if (begin_bit >= end_bit)
{
// Last pass exchanges keys through shared memory in striped arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToStriped(keys, ranks);
// Last pass exchanges through shared memory in striped arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<false>());
// Quit
break;
}
// Exchange keys through shared memory in blocked arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToBlocked(keys, ranks);
// Exchange values through shared memory in blocked arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<true>());
CTA_SYNC();
}
// Untwiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleOut(unsigned_keys[KEY]);
}
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// \smemstorage{BlockRadixSort}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockRadixSort()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockRadixSort(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Sorting (blocked arrangements)
*********************************************************************/
//@{
/**
* \brief Performs an ascending block-wide radix sort over a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>.
* The corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*/
__device__ __forceinline__ void Sort(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs an ascending block-wide radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values.
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).Sort(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*
*/
__device__ __forceinline__ void Sort(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending block-wide radix sort over a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>.
* The corresponding output \p thread_keys in those threads will be
* <tt>{ [511,510,509,508], [11,10,9,8], [7,6,5,4], ..., [3,2,1,0] }</tt>.
*/
__device__ __forceinline__ void SortDescending(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending block-wide radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values.
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).Sort(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,510,509,508], [11,10,9,8], [7,6,5,4], ..., [3,2,1,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescending(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
//@} end member group
/******************************************************************//**
* \name Sorting (blocked arrangement -> striped arrangement)
*********************************************************************/
//@{
/**
* \brief Performs an ascending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,128,256,384], [1,129,257,385], [2,130,258,386], ..., [127,255,383,511] }</tt>.
*
*/
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs an ascending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,128,256,384], [1,129,257,385], [2,130,258,386], ..., [127,255,383,511] }</tt>.
*
*/
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,383,255,127], [386,258,130,2], [385,257,128,1], ..., [384,256,128,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescendingBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,383,255,127], [386,258,130,2], [385,257,128,1], ..., [384,256,128,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescendingBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
//@} end member group
};
/**
* \example example_block_radix_sort.cu
*/
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)