Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
model_path = "mabel_transferlearning.keras" | |
model = tf.keras.models.load_model(model_path) | |
# Define the core prediction function | |
def predict_pokemons(image): | |
# Preprocess image | |
print(type(image)) | |
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image | |
image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale | |
image = np.array(image) | |
image = np.expand_dims(image, axis=0) # same as image[None, ...] | |
# Predict | |
prediction = model.predict(image) | |
# Apply sigmoid to get probabilities | |
prediction_prob = tf.sigmoid(prediction).numpy() | |
p_Abra = round(prediction_prob[0][0], 2) | |
p_Pikachu = round(prediction_prob[0][1], 2) | |
p_Beedrill = round(prediction_prob[0][2], 2) | |
return{'Abra': p_Abra, 'Pikachu': p_Pikachu, 'Beedrill': p_Beedrill} | |
# Create the Gradio interface | |
input_image = gr.Image() | |
iface = gr.Interface( | |
fn=predict_pokemons, | |
inputs=input_image, | |
outputs=gr.Label(), | |
examples=["Abra1.png", "Abra2.png", "Abra3.jpg", "Beedrill1.jpg", "Beedrill2.jpg", "Beedrill3.png", "Pikachu1.png", "Pikachu2.jpg", "Pikachu3.png"], | |
description="Pokemon Classifier") | |
iface.launch() |