File size: 7,717 Bytes
a1866c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2930c
a1866c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e4f69
 
 
 
 
 
a1866c7
 
 
 
3817748
a1866c7
 
 
 
 
 
3817748
a1866c7
00e4f69
a1866c7
 
 
 
 
7a888ed
a1866c7
 
 
 
 
 
 
 
 
 
 
 
 
 
3817748
a1866c7
 
 
 
 
 
 
 
 
00e4f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d2792
a1866c7
7a888ed
00e4f69
a1866c7
7a888ed
a1866c7
7a888ed
00e4f69
a1866c7
7a888ed
a1866c7
7a888ed
 
 
 
a1866c7
7a888ed
 
 
a1866c7
7a888ed
00e4f69
7a888ed
a1866c7
7a888ed
 
 
a1866c7
 
 
 
 
 
ac2930c
a1866c7
 
00e4f69
ac2930c
00e4f69
a1866c7
 
 
 
 
 
 
 
 
 
 
 
7a888ed
 
 
 
 
 
00e4f69
 
7a888ed
 
a1866c7
7a888ed
 
 
a1866c7
 
 
 
00e4f69
 
a1866c7
 
 
 
 
 
 
 
7a888ed
 
a1866c7
7a888ed
 
a1866c7
7a888ed
a1866c7
7a888ed
 
 
a1866c7
7a888ed
a1866c7
7a888ed
 
a1866c7
7a888ed
a1866c7
7a888ed
a1866c7
7a888ed
 
a1866c7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""

Run via: streamlit run app.py

"""

import json
import logging

import requests
import streamlit as st
import torch
from datasets import load_dataset
from datasets.dataset_dict import DatasetDict
from transformers import AutoTokenizer, AutoModel

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

model_hub_url = 'https://huggingface.co/malteos/aspect-scibert-task'

about_page_markdown = f"""# πŸ” Find Papers With Similar Task

See 
- GitHub: https://github.com/malteos/aspect-document-embeddings
- Paper: https://arxiv.org/abs/2203.14541
- Model hub: https://huggingface.co/malteos/aspect-scibert-task

"""

# Page setup
st.set_page_config(
    page_title="Papers with similar Task",
    page_icon="πŸ”",
    layout="centered",
    initial_sidebar_state="auto",
    menu_items={
        'Get help': None,
        'Report a bug': None,
        'About': about_page_markdown,
    }
)

aspect_labels = {
    'task': 'Task 🎯 ',
    'method': 'Method πŸ”¨ ',
    'dataset': 'Dataset 🏷️',
}
aspects = list(aspect_labels.keys())
tokenizer_name_or_path = f'malteos/aspect-scibert-{aspects[0]}'  # any aspect
dataset_config = 'malteos/aspect-paper-metadata'


@st.cache(show_spinner=True)
def st_load_model(name_or_path):
    with st.spinner(f'Loading the model `{name_or_path}` (this might take a while)...'):
        model = AutoModel.from_pretrained(name_or_path)
    return model


@st.cache(show_spinner=True)
def st_load_dataset(name_or_path):
    with st.spinner('Loading the dataset and search index (this might take a while)...'):
        dataset = load_dataset(name_or_path)

        if isinstance(dataset, DatasetDict):
            dataset = dataset['train']

        # load existing FAISS index for each aspect
        for a in aspects:
            dataset.load_faiss_index(f'{a}_embeddings', f'{a}_embeddings.faiss')

    return dataset


aspect_to_model = dict(
    task=st_load_model('malteos/aspect-scibert-task'),
    method=st_load_model('malteos/aspect-scibert-method'),
    dataset=st_load_model('malteos/aspect-scibert-dataset'),
)
dataset = st_load_dataset(dataset_config)


@st.cache(show_spinner=True)
def get_paper(doc_id):
    res = requests.get(f'https://api.semanticscholar.org/v1/paper/{doc_id}')

    if res.status_code == 200:
        return res.json()
    else:
        raise ValueError(f'Cannot load paper from S2 API: {doc_id}')


def get_embedding(input_text, user_aspect):
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)

    # preprocess the input
    inputs = tokenizer(input_text, padding=True, truncation=True, return_tensors="pt", max_length=512)

    # inference
    outputs = aspect_to_model[user_aspect](**inputs)

    # Mean pool the token-level embeddings to get sentence-level embeddings
    embeddings = torch.sum(
        outputs["last_hidden_state"] * inputs['attention_mask'].unsqueeze(-1), dim=1
    ) / torch.clamp(torch.sum(inputs['attention_mask'], dim=1, keepdims=True), min=1e-9)

    return embeddings.detach().numpy()[0]


#@st.cache(show_spinner=False)
def find_related_papers(paper_id, user_aspect):
    with st.spinner('Searching for related papers...'):
        paper_id = paper_id.strip()  # remove white spaces

        paper = get_paper(paper_id)

        if paper is None or 'title' not in paper or paper['title'] is None or 'abstract' not in paper or paper['abstract'] is None:
            raise ValueError(f'Could not retrieve title and abstract for input paper (the paper is probably behind a paywall): {paper_id}')

        title_abs = paper['title'] + ': ' + paper['abstract']

        result = dict(
            paper=paper,
            aspect=user_aspect,
        )

        result.update(dict(
            #embeddings=embeddings.tolist(),
        ))

        # Retrieval
        prompt = get_embedding(title_abs, user_aspect)
        scores, retrieved_examples = dataset.get_nearest_examples(f'{user_aspect}_embeddings', prompt, k=10)

        result.update(dict(
            related_papers=retrieved_examples,
        ))

    return result


# Page
st.title('Aspect-based Paper Similarity')
st.markdown("""This demo showcases [Specialized Document Embeddings for Aspect-based Research Paper Similarity](https://arxiv.org/abs/2203.14541).""")

# Introduction
st.markdown(f"""The model was trained using a triplet loss on machine learning papers from the [paperswithcode.com](https://paperswithcode.com/) corpus with the objective of pulling embeddings of papers with the same task, method, or dataset close together. 
For a more comprehensive overview of the model check out the [model card on πŸ€— Model Hub]({model_hub_url}) or read [our paper](https://arxiv.org/abs/2203.14541).""")
st.markdown("""Enter a ArXiv ID or a DOI of a paper for that you want find similar papers. The title and abstract of the input paper must be available through the [Semantic Scholar API](https://www.semanticscholar.org/product/api).

Try it yourself! πŸ‘‡""",
    unsafe_allow_html=True)

# Demo
with st.form("aspect-input", clear_on_submit=False):
    paper_id = st.text_input(
        label='Enter paper ID (format "arXiv:<arxiv_id>", "<doi>", or "ACL:<acl_id>"):',
        # value="arXiv:2202.06671",
        placeholder='Any DOI, ACL, or ArXiv ID'
    )

    example_labels = {
        "arXiv:1902.06818": "Data augmentation for low resource sentiment analysis using generative adversarial networks",
        "arXiv:2202.06671": "Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings",
        "ACL:N19-1423": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
        "10.18653/v1/S16-1001": "SemEval-2016 Task 4: Sentiment Analysis in Twitter",
        "10.1145/3065386": "ImageNet classification with deep convolutional neural networks",
        "arXiv:2101.08700": "Multi-sense embeddings through a word sense disambiguation process",
        "10.1145/3340531.3411878": "Incremental and parallel computation of structural graph summaries for evolving graphs",
    }

    example = st.selectbox(
        label='Or select an example:',
        options=list(example_labels.keys()),
        format_func=lambda option_key: f'{example_labels[option_key]} ({option_key})',
    )

    user_aspect = st.radio(
        label="In what aspect are you interested?",
        options=aspects,
        format_func=lambda option_key: aspect_labels[option_key],
    )

    cols = st.columns(3)
    submitted = cols[1].form_submit_button("Find related papers")

# Listener
if submitted:
    if paper_id or example:
        try:
            result = find_related_papers(paper_id if paper_id else example, user_aspect)

            input_paper = result['paper']
            related_papers = result['related_papers']

            # with st.empty():

            st.markdown(
                f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''',
                unsafe_allow_html=True)

            related_html = '<ul>'

            for i in range(len(related_papers['paper_id'])):
                related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''

            related_html += '</ul>'

            st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)

        except (TypeError, ValueError, KeyError) as e:
            st.error(f'**Error**: {e}')

    else:
        st.error('**Error**: No paper ID provided. Please provide a ArXiv ID or DOI.')