Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import torch | |
import numpy as np | |
import skimage.io as io | |
# from face_sdk import FaceDetection | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
from skimage.transform import SimilarityTransform | |
from skimage.transform import warp | |
from PIL import Image, ImageFilter | |
import torch.nn.functional as F | |
import torchvision as tv | |
import torchvision.utils as vutils | |
import time | |
import cv2 | |
import os | |
from skimage import img_as_ubyte | |
import json | |
import argparse | |
import dlib | |
def calculate_cdf(histogram): | |
""" | |
This method calculates the cumulative distribution function | |
:param array histogram: The values of the histogram | |
:return: normalized_cdf: The normalized cumulative distribution function | |
:rtype: array | |
""" | |
# Get the cumulative sum of the elements | |
cdf = histogram.cumsum() | |
# Normalize the cdf | |
normalized_cdf = cdf / float(cdf.max()) | |
return normalized_cdf | |
def calculate_lookup(src_cdf, ref_cdf): | |
""" | |
This method creates the lookup table | |
:param array src_cdf: The cdf for the source image | |
:param array ref_cdf: The cdf for the reference image | |
:return: lookup_table: The lookup table | |
:rtype: array | |
""" | |
lookup_table = np.zeros(256) | |
lookup_val = 0 | |
for src_pixel_val in range(len(src_cdf)): | |
lookup_val | |
for ref_pixel_val in range(len(ref_cdf)): | |
if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]: | |
lookup_val = ref_pixel_val | |
break | |
lookup_table[src_pixel_val] = lookup_val | |
return lookup_table | |
def match_histograms(src_image, ref_image): | |
""" | |
This method matches the source image histogram to the | |
reference signal | |
:param image src_image: The original source image | |
:param image ref_image: The reference image | |
:return: image_after_matching | |
:rtype: image (array) | |
""" | |
# Split the images into the different color channels | |
# b means blue, g means green and r means red | |
src_b, src_g, src_r = cv2.split(src_image) | |
ref_b, ref_g, ref_r = cv2.split(ref_image) | |
# Compute the b, g, and r histograms separately | |
# The flatten() Numpy method returns a copy of the array c | |
# collapsed into one dimension. | |
src_hist_blue, bin_0 = np.histogram(src_b.flatten(), 256, [0, 256]) | |
src_hist_green, bin_1 = np.histogram(src_g.flatten(), 256, [0, 256]) | |
src_hist_red, bin_2 = np.histogram(src_r.flatten(), 256, [0, 256]) | |
ref_hist_blue, bin_3 = np.histogram(ref_b.flatten(), 256, [0, 256]) | |
ref_hist_green, bin_4 = np.histogram(ref_g.flatten(), 256, [0, 256]) | |
ref_hist_red, bin_5 = np.histogram(ref_r.flatten(), 256, [0, 256]) | |
# Compute the normalized cdf for the source and reference image | |
src_cdf_blue = calculate_cdf(src_hist_blue) | |
src_cdf_green = calculate_cdf(src_hist_green) | |
src_cdf_red = calculate_cdf(src_hist_red) | |
ref_cdf_blue = calculate_cdf(ref_hist_blue) | |
ref_cdf_green = calculate_cdf(ref_hist_green) | |
ref_cdf_red = calculate_cdf(ref_hist_red) | |
# Make a separate lookup table for each color | |
blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue) | |
green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green) | |
red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red) | |
# Use the lookup function to transform the colors of the original | |
# source image | |
blue_after_transform = cv2.LUT(src_b, blue_lookup_table) | |
green_after_transform = cv2.LUT(src_g, green_lookup_table) | |
red_after_transform = cv2.LUT(src_r, red_lookup_table) | |
# Put the image back together | |
image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform]) | |
image_after_matching = cv2.convertScaleAbs(image_after_matching) | |
return image_after_matching | |
def _standard_face_pts(): | |
pts = ( | |
np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0 | |
- 1.0 | |
) | |
return np.reshape(pts, (5, 2)) | |
def _origin_face_pts(): | |
pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) | |
return np.reshape(pts, (5, 2)) | |
def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): | |
std_pts = _standard_face_pts() # [-1,1] | |
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0 | |
# print(target_pts) | |
h, w, c = img.shape | |
if normalize == True: | |
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 | |
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 | |
# print(landmark) | |
affine = SimilarityTransform() | |
affine.estimate(target_pts, landmark) | |
return affine | |
def compute_inverse_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): | |
std_pts = _standard_face_pts() # [-1,1] | |
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0 | |
# print(target_pts) | |
h, w, c = img.shape | |
if normalize == True: | |
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 | |
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 | |
# print(landmark) | |
affine = SimilarityTransform() | |
affine.estimate(landmark, target_pts) | |
return affine | |
def show_detection(image, box, landmark): | |
plt.imshow(image) | |
print(box[2] - box[0]) | |
plt.gca().add_patch( | |
Rectangle( | |
(box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none" | |
) | |
) | |
plt.scatter(landmark[0][0], landmark[0][1]) | |
plt.scatter(landmark[1][0], landmark[1][1]) | |
plt.scatter(landmark[2][0], landmark[2][1]) | |
plt.scatter(landmark[3][0], landmark[3][1]) | |
plt.scatter(landmark[4][0], landmark[4][1]) | |
plt.show() | |
def affine2theta(affine, input_w, input_h, target_w, target_h): | |
# param = np.linalg.inv(affine) | |
param = affine | |
theta = np.zeros([2, 3]) | |
theta[0, 0] = param[0, 0] * input_h / target_h | |
theta[0, 1] = param[0, 1] * input_w / target_h | |
theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1 | |
theta[1, 0] = param[1, 0] * input_h / target_w | |
theta[1, 1] = param[1, 1] * input_w / target_w | |
theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1 | |
return theta | |
def blur_blending(im1, im2, mask): | |
mask *= 255.0 | |
kernel = np.ones((10, 10), np.uint8) | |
mask = cv2.erode(mask, kernel, iterations=1) | |
mask = Image.fromarray(mask.astype("uint8")).convert("L") | |
im1 = Image.fromarray(im1.astype("uint8")) | |
im2 = Image.fromarray(im2.astype("uint8")) | |
mask_blur = mask.filter(ImageFilter.GaussianBlur(20)) | |
im = Image.composite(im1, im2, mask) | |
im = Image.composite(im, im2, mask_blur) | |
return np.array(im) / 255.0 | |
def blur_blending_cv2(im1, im2, mask): | |
mask *= 255.0 | |
kernel = np.ones((9, 9), np.uint8) | |
mask = cv2.erode(mask, kernel, iterations=3) | |
mask_blur = cv2.GaussianBlur(mask, (25, 25), 0) | |
mask_blur /= 255.0 | |
im = im1 * mask_blur + (1 - mask_blur) * im2 | |
im /= 255.0 | |
im = np.clip(im, 0.0, 1.0) | |
return im | |
# def Poisson_blending(im1,im2,mask): | |
# Image.composite( | |
def Poisson_blending(im1, im2, mask): | |
# mask=1-mask | |
mask *= 255 | |
kernel = np.ones((10, 10), np.uint8) | |
mask = cv2.erode(mask, kernel, iterations=1) | |
mask /= 255 | |
mask = 1 - mask | |
mask *= 255 | |
mask = mask[:, :, 0] | |
width, height, channels = im1.shape | |
center = (int(height / 2), int(width / 2)) | |
result = cv2.seamlessClone( | |
im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.MIXED_CLONE | |
) | |
return result / 255.0 | |
def Poisson_B(im1, im2, mask, center): | |
mask *= 255 | |
result = cv2.seamlessClone( | |
im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.NORMAL_CLONE | |
) | |
return result / 255 | |
def seamless_clone(old_face, new_face, raw_mask): | |
height, width, _ = old_face.shape | |
height = height // 2 | |
width = width // 2 | |
y_indices, x_indices, _ = np.nonzero(raw_mask) | |
y_crop = slice(np.min(y_indices), np.max(y_indices)) | |
x_crop = slice(np.min(x_indices), np.max(x_indices)) | |
y_center = int(np.rint((np.max(y_indices) + np.min(y_indices)) / 2 + height)) | |
x_center = int(np.rint((np.max(x_indices) + np.min(x_indices)) / 2 + width)) | |
insertion = np.rint(new_face[y_crop, x_crop] * 255.0).astype("uint8") | |
insertion_mask = np.rint(raw_mask[y_crop, x_crop] * 255.0).astype("uint8") | |
insertion_mask[insertion_mask != 0] = 255 | |
prior = np.rint(np.pad(old_face * 255.0, ((height, height), (width, width), (0, 0)), "constant")).astype( | |
"uint8" | |
) | |
# if np.sum(insertion_mask) == 0: | |
n_mask = insertion_mask[1:-1, 1:-1, :] | |
n_mask = cv2.copyMakeBorder(n_mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0) | |
print(n_mask.shape) | |
x, y, w, h = cv2.boundingRect(n_mask[:, :, 0]) | |
if w < 4 or h < 4: | |
blended = prior | |
else: | |
blended = cv2.seamlessClone( | |
insertion, # pylint: disable=no-member | |
prior, | |
insertion_mask, | |
(x_center, y_center), | |
cv2.NORMAL_CLONE, | |
) # pylint: disable=no-member | |
blended = blended[height:-height, width:-width] | |
return blended.astype("float32") / 255.0 | |
def get_landmark(face_landmarks, id): | |
part = face_landmarks.part(id) | |
x = part.x | |
y = part.y | |
return (x, y) | |
def search(face_landmarks): | |
x1, y1 = get_landmark(face_landmarks, 36) | |
x2, y2 = get_landmark(face_landmarks, 39) | |
x3, y3 = get_landmark(face_landmarks, 42) | |
x4, y4 = get_landmark(face_landmarks, 45) | |
x_nose, y_nose = get_landmark(face_landmarks, 30) | |
x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48) | |
x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54) | |
x_left_eye = int((x1 + x2) / 2) | |
y_left_eye = int((y1 + y2) / 2) | |
x_right_eye = int((x3 + x4) / 2) | |
y_right_eye = int((y3 + y4) / 2) | |
results = np.array( | |
[ | |
[x_left_eye, y_left_eye], | |
[x_right_eye, y_right_eye], | |
[x_nose, y_nose], | |
[x_left_mouth, y_left_mouth], | |
[x_right_mouth, y_right_mouth], | |
] | |
) | |
return results | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--origin_url", type=str, default="./", help="origin images") | |
parser.add_argument("--replace_url", type=str, default="./", help="restored faces") | |
parser.add_argument("--save_url", type=str, default="./save") | |
opts = parser.parse_args() | |
origin_url = opts.origin_url | |
replace_url = opts.replace_url | |
save_url = opts.save_url | |
if not os.path.exists(save_url): | |
os.makedirs(save_url) | |
face_detector = dlib.get_frontal_face_detector() | |
landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") | |
count = 0 | |
for x in os.listdir(origin_url): | |
img_url = os.path.join(origin_url, x) | |
pil_img = Image.open(img_url).convert("RGB") | |
origin_width, origin_height = pil_img.size | |
image = np.array(pil_img) | |
start = time.time() | |
faces = face_detector(image) | |
done = time.time() | |
if len(faces) == 0: | |
print("Warning: There is no face in %s" % (x)) | |
continue | |
blended = image | |
for face_id in range(len(faces)): | |
current_face = faces[face_id] | |
face_landmarks = landmark_locator(image, current_face) | |
current_fl = search(face_landmarks) | |
forward_mask = np.ones_like(image).astype("uint8") | |
affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) | |
aligned_face = warp(image, affine, output_shape=(256, 256, 3), preserve_range=True) | |
forward_mask = warp( | |
forward_mask, affine, output_shape=(256, 256, 3), order=0, preserve_range=True | |
) | |
affine_inverse = affine.inverse | |
cur_face = aligned_face | |
if replace_url != "": | |
face_name = x[:-4] + "_" + str(face_id + 1) + ".png" | |
cur_url = os.path.join(replace_url, face_name) | |
restored_face = Image.open(cur_url).convert("RGB") | |
restored_face = np.array(restored_face) | |
cur_face = restored_face | |
## Histogram Color matching | |
A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR) | |
B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR) | |
B = match_histograms(B, A) | |
cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB) | |
warped_back = warp( | |
cur_face, | |
affine_inverse, | |
output_shape=(origin_height, origin_width, 3), | |
order=3, | |
preserve_range=True, | |
) | |
backward_mask = warp( | |
forward_mask, | |
affine_inverse, | |
output_shape=(origin_height, origin_width, 3), | |
order=0, | |
preserve_range=True, | |
) ## Nearest neighbour | |
blended = blur_blending_cv2(warped_back, blended, backward_mask) | |
blended *= 255.0 | |
io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0)) | |
count += 1 | |
if count % 1000 == 0: | |
print("%d have finished ..." % (count)) | |