Spaces:
Runtime error
Runtime error
# Copyright (c) Microsoft Corporation. | |
# Licensed under the MIT License. | |
import torch | |
import numpy as np | |
import skimage.io as io | |
# from FaceSDK.face_sdk import FaceDetection | |
# from face_sdk import FaceDetection | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
from skimage.transform import SimilarityTransform | |
from skimage.transform import warp | |
from PIL import Image | |
import torch.nn.functional as F | |
import torchvision as tv | |
import torchvision.utils as vutils | |
import time | |
import cv2 | |
import os | |
from skimage import img_as_ubyte | |
import json | |
import argparse | |
import dlib | |
def _standard_face_pts(): | |
pts = ( | |
np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0 | |
- 1.0 | |
) | |
return np.reshape(pts, (5, 2)) | |
def _origin_face_pts(): | |
pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) | |
return np.reshape(pts, (5, 2)) | |
def get_landmark(face_landmarks, id): | |
part = face_landmarks.part(id) | |
x = part.x | |
y = part.y | |
return (x, y) | |
def search(face_landmarks): | |
x1, y1 = get_landmark(face_landmarks, 36) | |
x2, y2 = get_landmark(face_landmarks, 39) | |
x3, y3 = get_landmark(face_landmarks, 42) | |
x4, y4 = get_landmark(face_landmarks, 45) | |
x_nose, y_nose = get_landmark(face_landmarks, 30) | |
x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48) | |
x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54) | |
x_left_eye = int((x1 + x2) / 2) | |
y_left_eye = int((y1 + y2) / 2) | |
x_right_eye = int((x3 + x4) / 2) | |
y_right_eye = int((y3 + y4) / 2) | |
results = np.array( | |
[ | |
[x_left_eye, y_left_eye], | |
[x_right_eye, y_right_eye], | |
[x_nose, y_nose], | |
[x_left_mouth, y_left_mouth], | |
[x_right_mouth, y_right_mouth], | |
] | |
) | |
return results | |
def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): | |
std_pts = _standard_face_pts() # [-1,1] | |
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0 | |
# print(target_pts) | |
h, w, c = img.shape | |
if normalize == True: | |
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 | |
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 | |
# print(landmark) | |
affine = SimilarityTransform() | |
affine.estimate(target_pts, landmark) | |
return affine.params | |
def show_detection(image, box, landmark): | |
plt.imshow(image) | |
print(box[2] - box[0]) | |
plt.gca().add_patch( | |
Rectangle( | |
(box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none" | |
) | |
) | |
plt.scatter(landmark[0][0], landmark[0][1]) | |
plt.scatter(landmark[1][0], landmark[1][1]) | |
plt.scatter(landmark[2][0], landmark[2][1]) | |
plt.scatter(landmark[3][0], landmark[3][1]) | |
plt.scatter(landmark[4][0], landmark[4][1]) | |
plt.show() | |
def affine2theta(affine, input_w, input_h, target_w, target_h): | |
# param = np.linalg.inv(affine) | |
param = affine | |
theta = np.zeros([2, 3]) | |
theta[0, 0] = param[0, 0] * input_h / target_h | |
theta[0, 1] = param[0, 1] * input_w / target_h | |
theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1 | |
theta[1, 0] = param[1, 0] * input_h / target_w | |
theta[1, 1] = param[1, 1] * input_w / target_w | |
theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1 | |
return theta | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--url", type=str, default="/home/jingliao/ziyuwan/celebrities", help="input") | |
parser.add_argument( | |
"--save_url", type=str, default="/home/jingliao/ziyuwan/celebrities_detected_face_reid", help="output" | |
) | |
opts = parser.parse_args() | |
url = opts.url | |
save_url = opts.save_url | |
### If the origin url is None, then we don't need to reid the origin image | |
os.makedirs(url, exist_ok=True) | |
os.makedirs(save_url, exist_ok=True) | |
face_detector = dlib.get_frontal_face_detector() | |
landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") | |
count = 0 | |
map_id = {} | |
for x in os.listdir(url): | |
img_url = os.path.join(url, x) | |
pil_img = Image.open(img_url).convert("RGB") | |
image = np.array(pil_img) | |
start = time.time() | |
faces = face_detector(image) | |
done = time.time() | |
if len(faces) == 0: | |
print("Warning: There is no face in %s" % (x)) | |
continue | |
print(len(faces)) | |
if len(faces) > 0: | |
for face_id in range(len(faces)): | |
current_face = faces[face_id] | |
face_landmarks = landmark_locator(image, current_face) | |
current_fl = search(face_landmarks) | |
affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) | |
aligned_face = warp(image, affine, output_shape=(256, 256, 3)) | |
img_name = x[:-4] + "_" + str(face_id + 1) | |
io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face)) | |
count += 1 | |
if count % 1000 == 0: | |
print("%d have finished ..." % (count)) | |