|
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import joblib
|
|
import pickle
|
|
|
|
|
|
model = joblib.load('models\model1.pkl')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_sales(input_data):
|
|
|
|
sales_prediction = model.predict(input_data)
|
|
return sales_prediction
|
|
|
|
|
|
def main():
|
|
st.title('Sales Prediction App')
|
|
st.image("images\\r1.jpg", caption="Sunrise by the mountains")
|
|
|
|
|
|
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
|
|
|
|
|
|
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
|
|
Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
|
|
|
|
|
|
|
|
StateHoliday = st.radio("State Holiday", ["Yes", "No"])
|
|
StateHoliday = 1 if StateHoliday == "Yes" else 0
|
|
|
|
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
|
|
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
|
|
|
|
Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
|
|
Promo = 1 if Promo == "store is participating" else 0
|
|
|
|
|
|
|
|
Store = st.slider("Store", 1, 1115)
|
|
Customers = st.slider("Customers", 0, 7388)
|
|
CompetitionDistance = st.slider("Competition Distance", 20, 75860)
|
|
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
|
|
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
|
|
|
|
|
|
|
|
input_data = pd.DataFrame({
|
|
'PromoInterval': [PromoInterval],
|
|
'StoreType': [StoreType],
|
|
'Assortment': [Assortment],
|
|
'StateHoliday': [StateHoliday],
|
|
'Store': [Store],
|
|
'Customers': [Customers],
|
|
'Promo': [Promo],
|
|
'SchoolHoliday': [SchoolHoliday],
|
|
'CompetitionDistance': [CompetitionDistance],
|
|
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
|
|
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
|
|
})
|
|
|
|
|
|
st.subheader('Input Data:')
|
|
st.write(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if st.button('Predict Sales'):
|
|
prediction = predict_sales(input_data)[0]
|
|
formatted_prediction = "{:.2f}".format(prediction)
|
|
st.write('Predicted Sales:', formatted_prediction)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|