visdecode / app.py
martinsinnona
a
19dfe9f
raw
history blame
1.17 kB
import gradio as gr
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import torch
from PIL import Image
# Load the processor and model
processor = AutoProcessor.from_pretrained("google/matcha-base")
processor.image_processor.is_vqa = False
model = Pix2StructForConditionalGeneration.from_pretrained("martinsinnona/visdecode_B").to("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
def generate_caption(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(images=image, return_tensors="pt", max_patches=1024).to(device)
generated_ids = model.generate(flattened_patches=inputs.flattened_patches, attention_mask=inputs.attention_mask, max_length=600)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
# Create the Gradio interface
demo = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil"),
outputs="text",
title="Image to Text Generator",
description="Upload an image and get a generated caption."
)
# Launch the interface
if __name__ == "__main__":
demo.launch(share=True)