File size: 26,345 Bytes
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
 
 
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c939ae6
 
 
 
0c2c19f
c939ae6
0c2c19f
c939ae6
0c2c19f
c939ae6
 
 
0c2c19f
 
 
 
c939ae6
 
 
 
 
0c2c19f
 
 
 
 
 
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
c939ae6
0c2c19f
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
c939ae6
 
0c2c19f
c939ae6
 
0c2c19f
c939ae6
0c2c19f
c939ae6
 
 
0c2c19f
 
c939ae6
 
 
 
 
 
 
 
 
0c2c19f
c939ae6
 
0c2c19f
c939ae6
 
 
 
0c2c19f
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2c19f
 
 
 
 
c939ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Common modules
"""

import math
import warnings
from copy import copy
from pathlib import Path

import numpy as np
import pandas as pd
import requests
import torch
import torch.nn as nn
from PIL import Image
from torch.cuda import amp

from utils.datasets import exif_transpose, letterbox
from utils.general import (LOGGER, colorstr, increment_path,
                           make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, time_sync


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class DWConv(Conv):
    # Depth-wise convolution class
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class TransformerLayer(nn.Module):
    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
    def __init__(self, c, num_heads):
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)

    def forward(self, x):
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
        x = self.fc2(self.fc1(x)) + x
        return x


class TransformerBlock(nn.Module):
    # Vision Transformer https://arxiv.org/abs/2010.11929
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))


class C3TR(C3):
    # C3 module with TransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)


class C3SPP(C3):
    # C3 module with SPP()
    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = SPP(c_, c_, k)


class C3Ghost(C3):
    # C3 module with GhostBottleneck()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))


class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
        # return self.conv(self.contract(x))


class GhostConv(nn.Module):
    # Ghost Convolution https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

    def forward(self, x):
        y = self.cv1(x)
        return torch.cat([y, self.cv2(y)], 1)


class GhostBottleneck(nn.Module):
    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pw
                                  DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
                                  GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
                                      Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

    def forward(self, x):
        return self.conv(x) + self.shortcut(x)


class Contract(nn.Module):
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)


class Expand(nn.Module):
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)


class DetectMultiBackend(nn.Module):
    # YOLOv5 MultiBackend class for python inference on various backends
    def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
        # Usage:
        #   PyTorch:      weights = *.pt
        #   TorchScript:            *.torchscript
        #   CoreML:                 *.mlmodel
        #   OpenVINO:               *.xml
        #   TensorFlow:             *_saved_model
        #   TensorFlow:             *.pb
        #   TensorFlow Lite:        *.tflite
        #   TensorFlow Edge TPU:    *_edgetpu.tflite
        #   ONNX Runtime:           *.onnx
        #   OpenCV DNN:             *.onnx with dnn=True
        #   TensorRT:               *.engine
        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import

        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        suffix = Path(w).suffix.lower()
        suffixes = ['.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel', '.xml']
        pt, jit, onnx, engine, tflite, pb, saved_model, coreml, xml = (suffix == x for x in suffixes)  # backends
        
        model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
        stride = max(int(model.stride.max()), 32)  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        
        self.__dict__.update(locals())  # assign all variables to self

    def forward(self, im, augment=False, visualize=False, val=False):
        # YOLOv5 MultiBackend inference
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.pt or self.jit:  # PyTorch
            y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
            return y if val else y[0]
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW')  # Tensor Description
            request = self.executable_network.requests[0]  # inference request
            request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im))  # name=next(iter(request.input_blobs))
            request.infer()
            y = request.output_blobs['output'].buffer  # name=next(iter(request.output_blobs))
        elif self.engine:  # TensorRT
            assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = self.bindings['output'].data
        elif self.coreml:  # CoreML
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            im = Image.fromarray((im[0] * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.ANTIALIAS)
            y = self.model.predict({'image': im})  # coordinates are xywh normalized
            if 'confidence' in y:
                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            else:
                y = y[list(y)[-1]]  # last output
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            if self.saved_model:  # SavedModel
                y = self.model(im, training=False).numpy()
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im)).numpy()
            elif self.tflite:  # Lite
                input, output = self.input_details[0], self.output_details[0]
                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
                if int8:
                    scale, zero_point = input['quantization']
                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
                self.interpreter.set_tensor(input['index'], im)
                self.interpreter.invoke()
                y = self.interpreter.get_tensor(output['index'])
                if int8:
                    scale, zero_point = output['quantization']
                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
            y[..., 0] *= w  # x
            y[..., 1] *= h  # y
            y[..., 2] *= w  # w
            y[..., 3] *= h  # h

        y = torch.tensor(y) if isinstance(y, np.ndarray) else y
        return (y, []) if val else y

    def warmup(self, imgsz=(1, 3, 640, 640), half=False):
        # Warmup model by running inference once
        if self.pt or self.jit or self.onnx or self.engine:  # warmup types
            if isinstance(self.device, torch.device) and self.device.type != 'cpu':  # only warmup GPU models
                im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float)  # input image
                self.forward(im)  # warmup


class AutoShape(nn.Module):
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    conf = 0.25  # NMS confidence threshold
    iou = 0.45  # NMS IoU threshold
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference

    def __init__(self, model):
        super().__init__()
        LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        self.model = model.eval()

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

    @torch.no_grad()
    def forward(self, imgs, size=640, augment=False, profile=False):
        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        t = [time_sync()]
        p = next(self.model.parameters()) if self.pt else torch.zeros(1)  # for device and type
        autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
        if isinstance(imgs, torch.Tensor):  # torch
            with amp.autocast(enabled=autocast):
                return self.model(imgs.to(p.device).type_as(p), augment, profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs])  # number of images, list of images
        shape0, shape1, files = [], [], []  # image and inference shapes, filenames
        for i, im in enumerate(imgs):
            f = f'image{i}'  # filename
            if isinstance(im, (str, Path)):  # filename or uri
                im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                im = np.asarray(exif_transpose(im))
            elif isinstance(im, Image.Image):  # PIL Image
                im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
            files.append(Path(f).with_suffix('.jpg').name)
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
        shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)]  # inference shape
        x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
        t.append(time_sync())

        with amp.autocast(enabled=autocast):
            # Inference
            y = self.model(x, augment, profile)  # forward
            t.append(time_sync())

            # Post-process
            y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
                                    agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det)  # NMS
            for i in range(n):
                scale_coords(shape1, y[i][:, :4], shape0[i])

            t.append(time_sync())
            return Detections(imgs, y, files, t, self.names, x.shape)


class Detections:
    # YOLOv5 detections class for inference results
    def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs]  # normalizations
        self.imgs = imgs  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
        self.s = shape  # inference BCHW shape

    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
        crops = []
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
                                          'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label, color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                LOGGER.info(s.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.imgs[i] = np.asarray(im)
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops

    def print(self):
        self.display(pprint=True)  # print results
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
                    self.t)

    def show(self):
        self.display(show=True)  # show results

    def save(self, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
        self.display(save=True, save_dir=save_dir)  # save results

    def crop(self, save=True, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results

    def render(self):
        self.display(render=True)  # render results
        return self.imgs

    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new

    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x

    def __len__(self):
        return self.n


class Classify(nn.Module):
    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.aap = nn.AdaptiveAvgPool2d(1)  # to x(b,c1,1,1)
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g)  # to x(b,c2,1,1)
        self.flat = nn.Flatten()

    def forward(self, x):
        z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1)  # cat if list
        return self.flat(self.conv(z))  # flatten to x(b,c2)