AgeGuesser / app.py
onipot
pil image as input
bd1ea7f
raw
history blame
3.37 kB
import gradio as gr
from PIL import Image,ImageDraw, ImageFont, ImageOps
import sys
import torch
from util import Detection
import os
if os.environ.get('FACE_MODEL') is not None:
face_model = os.environ.get('FACE_MODEL')
age_model = os.environ.get('AGE_MODEL')
torch.hub.download_url_to_file(face_model, 'face_model.pt')
torch.hub.download_url_to_file(age_model, 'age_model.pt')
sys.path.append("./")
sys.path.append("./yolov5")
from yolov5.detect import predict, load_yolo_model
# Load Models
model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320])
age_model_ts = torch.jit.load("age_model.pt")
roboto_font = ImageFont.truetype("Roboto-Regular.ttf")
def run_yolo(img):
img_path = img
img0 = Image.open(img_path).convert("RGB")
img0 = ImageOps.contain(img0, (720,720))
img0 = ImageOps.exif_transpose(img0)
draw = ImageDraw.Draw(img0)
predictions = predict(age_model_ts, model,
stride, imgsz=[320, 320],
conf_thres=0.5, iou_thres=0.45,
source=img0
)
detections : list[Detection] = []
for k, bbox in enumerate(predictions):
det = Detection(
(k+1),
bbox["xmin"],
bbox["ymin"],
bbox["xmax"],
bbox["ymax"],
bbox["conf"],
bbox["class"],
bbox["class"],
img0.size
)
detections.append(det)
draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255))
draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=roboto_font)
return img0
# run_yolo("D:\\Download\\IMG_20220803_153335.jpg")
inputs = gr.inputs.Image(type='filepath', label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "AgeGuesser"
description = "Guess the age of a person from a facial image!"
article = """<p>A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time.</p>
<p><b>Links</b></p>
<ul>
<li>
<a href='https://link.springer.com/chapter/10.1007/978-3-030-89131-2_25'>Springer</a>
</li>
<li>
<a href='https://www.researchgate.net/publication/355777953_Real-Time_Age_Estimation_from_Facial_Images_Using_YOLO_and_EfficientNet'>Paper</a>
</li>
<li>
<a href='https://github.com/ai-hazard/AgeGuesser-train'>Github</a>
</li>
</ul>
<p>Credits to my dear colleague <a href='https://www.linkedin.com/in/nicola-marvulli-904270136/'>Dott. Nicola Marvulli</a>, we've developed AgeGuesser together as part of two university exams. (Computer Vision + Deep Learning)</p>
<p>Credits to my dear professors and the <a href='https://sites.google.com/site/cilabuniba/'>CILAB</a> research group</p>
<ul>
<li>
<a href='https://sites.google.com/site/cilabuniba/people/giovanna-castellano'>Prof. Giovanna Castellano</a>
</li>
<li>
<a href='https://sites.google.com/view/gennaro-vessio/home-page'>Prof. Gennaro Vessio</a>
</li>
</ul>
"""
examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ]
gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)