File size: 14,506 Bytes
863daa6 21ac434 7bf8be4 740e228 7bf8be4 20f957a 93b4f33 20f957a 68a2713 72c555f 21b510b 72c555f 21b510b 72c555f 68a2713 93b4f33 7bf8be4 b7e92a0 863daa6 b7e92a0 21b510b 68a2713 20f957a 68a2713 7bf8be4 68a2713 7bf8be4 740e228 c298690 863daa6 c298690 863daa6 c298690 20f957a 863daa6 7bf8be4 20f957a 863daa6 20f957a 7bf8be4 20f957a ecc5710 863daa6 ecc5710 863daa6 ecc5710 e03622b 7bf8be4 20f957a 848f63d 863daa6 c298690 d4b293d 863daa6 c298690 848f63d 863daa6 848f63d e03622b 848f63d 7bf8be4 836b08d c298690 836b08d c298690 e03622b 836b08d 928cd59 e03622b 863daa6 e03622b 928cd59 863daa6 e03622b 863daa6 e03622b 928cd59 863daa6 e03622b c298690 863daa6 e03622b 863daa6 49b4d85 863daa6 836b08d e03622b 836b08d e03622b 836b08d 7bf8be4 72c555f f18070d c298690 d4b293d 7bf8be4 d4b293d 7bf8be4 21b510b 20f957a 863daa6 740e228 c298690 5ecc9ee 7bf8be4 20f957a 7bf8be4 20f957a 5ecc9ee 20f957a 848f63d 20f957a 5ecc9ee 836b08d 20f957a 5ecc9ee 836b08d 928cd59 5256c84 90742aa 20f957a 5ecc9ee 836b08d 90742aa 20f957a 72c555f 20f957a 7bf8be4 21b510b 863daa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import torch
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
from run import run_pipeline
# Set page configuration
st.set_page_config(layout="wide")
# Function to load and clean data
def load_and_clean_data():
df1 = pd.read_csv("data/reviewed_social_media_english.csv")
df2 = pd.read_csv("data/reviewed_news_english.csv")
df3 = pd.read_csv("data/tamil_social_media.csv")
df4 = pd.read_csv("data/tamil_news.csv")
# Concatenate dataframes and clean data
df_combined = pd.concat([df1, df2, df3, df4])
# Replace 'nan' and 'None' with numpy NaN for removal
df_combined['Domain'] = df_combined['Domain'].replace({"MUSLIM": "Muslim", "nan": pd.NA, "None": pd.NA, "Other-Ethnic": "Other-Ethnicity"})
# Specific replacements for 'Sentiment' and 'Discrimination'
df_combined['Sentiment'] = df_combined['Sentiment'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})
df_combined['Discrimination'] = df_combined['Discrimination'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})
# Drop rows with NA values in 'Domain', 'Sentiment', and 'Discrimination'
df_combined.dropna(subset=['Domain', 'Sentiment', 'Discrimination'], inplace=True)
return df_combined
df = load_and_clean_data()
# Page navigation setup
page_names = ["Dashboard for GESI Conversation in Sri Lanka", "GESI Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"]
page = st.sidebar.selectbox("Choose a page", page_names)
# Sidebar Filters
domain_options = df['Domain'].dropna().unique()
channel_options = df['Channel'].dropna().unique()
sentiment_options = df['Sentiment'].dropna().unique()
discrimination_options = df['Discrimination'].dropna().unique()
domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options)
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options)
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)
# Apply filters
df_filtered = df[(df['Domain'].isin(domain_filter)) &
(df['Channel'].isin(channel_filter)) &
(df['Sentiment'].isin(sentiment_filter)) &
(df['Discrimination'].isin(discrimination_filter))]
# Define a color palette for consistent visualization styles
color_palette = px.colors.sequential.Viridis
# Function to render the model prediction visualization page
def render_prediction_page():
st.title("Dashboard for GESI Conversations in Sri Lanka")
st.write("""
Instant Analysis: Enter any text snippet and get immediate predictions from our model trained on English, Sinhala, and Tamil languages.\n\n
Domain Identification: Discover the subject matter of your text with a quantifiable domain score.
""")
# User input text area
user_input = st.text_area("Enter Text/Content here to analyze", height=150)
if st.button("Perform Contextual Analysis"):
# Use run_pipeline to get predictions
predictions = run_pipeline(user_input)
# Extract prediction details
domain_label = predictions.get("domain_label", "Unknown")
domain_score = predictions.get("domain_score", 0)
discrimination_label = predictions.get("discrimination_label", "Unknown")
discrimination_score = predictions.get("discrimination_score", 0)
# Visualization layout
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Domain Label")
st.markdown(f"## {domain_label}")
st.progress(domain_score)
with col2:
st.markdown("#### Discrimination Label")
st.markdown(f"## {discrimination_label}")
st.progress(discrimination_score)
col3, col4 = st.columns(2)
with col3:
# Display Domain Score in Bold
st.markdown(f'**Domain Score: {domain_score:.2f}**', unsafe_allow_html=True)
with col4:
# Display Discrimination Score in Bold
st.markdown(f'**Discrimination Score: {discrimination_score:.2f}**', unsafe_allow_html=True)
# Visualization for Domain Distribution
def create_pie_chart(df, column, title):
fig = px.pie(df, names=column, title=title, hole=0.35)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
fig.update_traces(marker=dict(colors=color_palette))
return fig
# Visualization for Distribution of Gender versus Ethnicity
def create_gender_ethnicity_distribution_chart(df):
df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
return fig
# Visualization for Sentiment Distribution Across Domains
def create_sentiment_distribution_chart(df):
domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
domain_counts = domain_counts.sort_values('counts')
# color scheme
color_map = {'Negative': 'red', 'Positive': 'blue', 'Neutral': 'lightblue'}
fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', color_discrete_map=color_map,
title="Sentiment Distribution Across Domains", barmode='stack')
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=10))
return fig
# Visualization for Correlation between Sentiment and Discrimination
def create_sentiment_discrimination_grouped_chart(df):
# Creating a crosstab of 'Sentiment' and 'Discrimination'
crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination'])
# Check if 'Discriminative' and 'Non Discriminative' are in the columns after the crosstab operation
value_vars = crosstab_df.columns.intersection(['Discriminative', 'Non Discriminative']).tolist()
# If 'Non Discriminative' is not in columns, it will not be included in melting
melted_df = pd.melt(crosstab_df.reset_index(), id_vars='Sentiment', value_vars=value_vars, var_name='Discrimination', value_name='Count')
# Proceeding to plot only if we have data to plot
if not melted_df.empty:
fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=10))
return fig
else:
return "No data to display for the selected filters."
# Function for Top Domains with Negative Sentiment Chart
def create_top_negative_sentiment_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Negative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3, [0]]
domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'})
domain_counts_subset = domain_counts_subset.reset_index()
colors = ['limegreen', 'crimson', 'darkcyan']
fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
orientation='h', color_discrete_sequence=colors)
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Negative Sentiment Content Count", yaxis_title="Domain", font=dict(size=10))
return fig
# Function for Key Phrases in Negative Sentiment Content Chart
def create_key_phrases_negative_sentiment_chart(df):
cv = CountVectorizer(ngram_range=(3,3), stop_words='english')
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative'])
count_values = trigrams.toarray().sum(axis=0)
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
ngram_freq.columns = ['frequency', 'ngram']
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key Phrases in Negative Sentiment Content')
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10))
return fig
# Function for Key Phrases in Positive Sentiment Content Chart
def create_key_phrases_positive_sentiment_chart(df):
# Filter the DataFrame for positive sentiments and drop any rows with NaN in 'Content'
positive_df = df[df['Sentiment'] == 'Positive'].dropna(subset=['Content'])
# Create a CountVectorizer instance
cv = CountVectorizer(ngram_range=(3, 3), stop_words='english')
# Apply CountVectorizer only on non-null content
trigrams = cv.fit_transform(positive_df['Content'])
# Sum the frequency of each n-gram and create a DataFrame
count_values = trigrams.toarray().sum(axis=0)
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
ngram_freq.columns = ['frequency', 'ngram']
# Create the bar chart
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key Phrases in Positive Sentiment Content')
# Update layout settings
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10))
return fig
# Function for Prevalence of Discriminatory Content Chart
def create_prevalence_discriminatory_content_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
title='Prevalence of Discriminatory Content')
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Count", font=dict(size=10))
return fig
# Function for Top Domains with Discriminatory Content Chart
def create_top_discriminatory_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3]
domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
title='Top Domains with Discriminatory Content')
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain", font=dict(size=10))
return fig
# Function for Channel-wise Sentiment Over Time Chart
def create_sentiment_distribution_by_channel_chart(df):
sentiment_by_channel = df.groupby(['Channel', 'Sentiment']).size().reset_index(name='counts')
color_map = {'Positive': 'blue', 'Neutral': 'lightblue', 'Negative': 'red'}
fig = px.bar(sentiment_by_channel, x='Channel', y='counts', color='Sentiment', title="Sentiment Distribution by Channel", barmode='group', color_discrete_map=color_map)
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Channel", yaxis_title="Counts", font=dict(size=10), title_x=0.5)
return fig
# Function for Channel-wise Distribution of Discriminative Content Chart
def create_channel_discrimination_chart(df):
channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group')
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=50, b=20), font=dict(size=10), title_x=0.5)
return fig
# Function for rendering dashboard
def render_dashboard(page, df_filtered):
if page == "Dashboard for GESI Conversations in Sri Lanka":
render_prediction_page()
elif page == "GESI Overview":
st.title("GESI Overview Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
with col2:
st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))
col3, col4 = st.columns(2)
with col3:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col4:
chart = create_sentiment_discrimination_grouped_chart(df_filtered)
if isinstance(chart, str):
st.write(chart)
else:
st.plotly_chart(chart)
elif page == "Sentiment Analysis":
st.title("Sentiment Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col2:
st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered))
col3, col4 = st.columns(2)
with col3:
st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered))
with col4:
st.plotly_chart(create_key_phrases_positive_sentiment_chart(df_filtered))
elif page == "Discrimination Analysis":
st.title("Discrimination Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered))
with col2:
st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered))
elif page == "Channel Analysis":
st.title("Channel Analysis Dashboard")
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_sentiment_distribution_by_channel_chart(df_filtered))
with col2:
st.plotly_chart(create_channel_discrimination_chart(df_filtered))
# Render the selected dashboard page
render_dashboard(page, df_filtered)
|