File size: 5,952 Bytes
896437a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from network import U2NET

import os
from PIL import Image
import cv2
import gdown
import argparse
import numpy as np

import torch
import torch.nn.functional as F
import torchvision.transforms as transforms

from collections import OrderedDict
from options import opt


def load_checkpoint(model, checkpoint_path):
    if not os.path.exists(checkpoint_path):
        print("----No checkpoints at given path----")
        return
    model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
    new_state_dict = OrderedDict()
    for k, v in model_state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v

    model.load_state_dict(new_state_dict)
    print("----checkpoints loaded from path: {}----".format(checkpoint_path))
    return model


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Args:
        num_cls: Number of classes
    Returns:
        The color map
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


class Normalize_image(object):
    """Normalize given tensor into given mean and standard dev

    Args:
        mean (float): Desired mean to substract from tensors
        std (float): Desired std to divide from tensors
    """

    def __init__(self, mean, std):
        assert isinstance(mean, (float))
        if isinstance(mean, float):
            self.mean = mean

        if isinstance(std, float):
            self.std = std

        self.normalize_1 = transforms.Normalize(self.mean, self.std)
        self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
        self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)

    def __call__(self, image_tensor):
        if image_tensor.shape[0] == 1:
            return self.normalize_1(image_tensor)

        elif image_tensor.shape[0] == 3:
            return self.normalize_3(image_tensor)

        elif image_tensor.shape[0] == 18:
            return self.normalize_18(image_tensor)

        else:
            assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"




def apply_transform(img):
    transforms_list = []
    transforms_list += [transforms.ToTensor()]
    transforms_list += [Normalize_image(0.5, 0.5)]
    transform_rgb = transforms.Compose(transforms_list)
    return transform_rgb(img)



def generate_mask(input_image, net, palette, device = 'cpu'):

    #img = Image.open(input_image).convert('RGB')
    img = input_image
    img_size = img.size
    img = img.resize((768, 768), Image.BICUBIC)
    image_tensor = apply_transform(img)
    image_tensor = torch.unsqueeze(image_tensor, 0)

    alpha_out_dir = os.path.join(opt.output,'alpha')
    cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg')

    os.makedirs(alpha_out_dir, exist_ok=True)
    os.makedirs(cloth_seg_out_dir, exist_ok=True)

    with torch.no_grad():
        output_tensor = net(image_tensor.to(device))
        output_tensor = F.log_softmax(output_tensor[0], dim=1)
        output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
        output_tensor = torch.squeeze(output_tensor, dim=0)
        output_arr = output_tensor.cpu().numpy()

    classes_to_save = []

    # Check which classes are present in the image
    for cls in range(1, 4):  # Exclude background class (0)
        if np.any(output_arr == cls):
            classes_to_save.append(cls)

    # Save alpha masks
    for cls in classes_to_save:
        alpha_mask = (output_arr == cls).astype(np.uint8) * 255
        alpha_mask = alpha_mask[0]  # Selecting the first channel to make it 2D
        alpha_mask_img = Image.fromarray(alpha_mask, mode='L')
        alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
        alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png'))

    # Save final cloth segmentations
    cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P')
    cloth_seg.putpalette(palette)
    cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC)
    cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png'))
    return cloth_seg



def check_or_download_model(file_path):
    if not os.path.exists(file_path):
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY"
        gdown.download(url, file_path, quiet=False)
        print("Model downloaded successfully.")
    else:
        print("Model already exists.")


def load_seg_model(checkpoint_path, device='cpu'):
    net = U2NET(in_ch=3, out_ch=4)
    check_or_download_model(checkpoint_path)
    net = load_checkpoint(net, checkpoint_path)
    net = net.to(device)
    net = net.eval()

    return net


def main(args):

    device = 'cuda:0' if args.cuda else 'cpu'

    # Create an instance of your model
    model = load_seg_model(args.checkpoint_path, device=device)

    palette = get_palette(4)

    img = Image.open(args.image).convert('RGB')

    cloth_seg = generate_mask(img, net=model, palette=palette, device=device)



if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.')
    parser.add_argument('--image', type=str, help='Path to the input image')
    parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)')
    parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file')
    args = parser.parse_args()

    main(args)