Spaces:
Running
Running
import PIL | |
import torch | |
import gradio as gr | |
from process import load_seg_model, get_palette, generate_mask | |
device = 'cpu' | |
def initialize_and_load_models(): | |
checkpoint_path = 'model/cloth_segm.pth' | |
net = load_seg_model(checkpoint_path, device=device) | |
return net | |
net = initialize_and_load_models() | |
palette = get_palette(4) | |
def run(img): | |
cloth_seg = generate_mask(img, net=net, palette=palette, device=device) | |
return cloth_seg | |
# Define input and output interfaces | |
input_image = gr.inputs.Image(label="Input Image", type="pil") | |
# Define the Gradio interface | |
cloth_seg_image = gr.outputs.Image(label="Cloth Segmentation", type="pil") | |
title = "Demo for Cloth Segmentation" | |
description = "An app for Cloth Segmentation" | |
inputs = [input_image] | |
outputs = [cloth_seg_image] | |
gr.Interface(fn=run, inputs=inputs, outputs=outputs, title=title, description=description).launch() | |