LLMLingua / README.md
iofu728's picture
Feature(LLMLingua): update readme
c5b556d
|
raw
history blame
1.92 kB
---
title: LLMLingua
emoji: πŸ“
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 3.47.1
app_file: app.py
pinned: false
license: mit
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
<div style="display: flex; align-items: center; ">
<div style="width: 100px; margin-right: 10px; height:auto;" align="left">
<img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left">
</div>
<div style="flex-grow: 1;" align="center">
<h2 align="center">LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models & LongLLMLingua</h1>
</div>
</div>
<p align="center">
| <a href="https://arxiv.org/abs/2310.05736"><b>LLMLingua Paper</b></a> | <a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua Paper</b></a> | <a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>HF Space Demo</b></a> |
</p>
## Tl;DR
LLMLingua, that uses a well-trained small language model after alignment, such as GPT2-small or LLaMA-7B, to detect the unimportant tokens in the prompt and enable inference with the compressed prompt in black-box LLMs, achieving up to 20x compression with minimal performance loss.
[LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://arxiv.org/abs/2310.05736) (EMNLP 2023).<br>
_Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
LongLLMLingua is a method that enhances LLMs' ability to perceive key information in long-context scenarios using prompt compression, achieveing up to $28.5 in cost savings per 1,000 samples while also improving performance.
[LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (Under Review).<br>
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_