Spaces:
Running
Running
title: LLMLingua | |
emoji: π | |
colorFrom: red | |
colorTo: yellow | |
sdk: gradio | |
sdk_version: 3.47.1 | |
app_file: app.py | |
pinned: false | |
license: mit | |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference | |
<div style="display: flex; align-items: center; "> | |
<div style="width: 100px; margin-right: 10px; height:auto;" align="left"> | |
<img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left"> | |
</div> | |
<div style="flex-grow: 1;" align="center"> | |
<h2 align="center">LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models & LongLLMLingua</h1> | |
</div> | |
</div> | |
<p align="center"> | |
| <a href="https://arxiv.org/abs/2310.05736"><b>LLMLingua Paper</b></a> | <a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua Paper</b></a> | <a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>HF Space Demo</b></a> | | |
</p> | |
## Tl;DR | |
LLMLingua, that uses a well-trained small language model after alignment, such as GPT2-small or LLaMA-7B, to detect the unimportant tokens in the prompt and enable inference with the compressed prompt in black-box LLMs, achieving up to 20x compression with minimal performance loss. | |
[LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://arxiv.org/abs/2310.05736) (EMNLP 2023).<br> | |
_Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
LongLLMLingua is a method that enhances LLMs' ability to perceive key information in long-context scenarios using prompt compression, achieveing up to $28.5 in cost savings per 1,000 samples while also improving performance. | |
[LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (Under Review).<br> | |
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ |