Spaces:
Running
Running
title: LLMLingua | |
emoji: π | |
colorFrom: red | |
colorTo: yellow | |
sdk: gradio | |
sdk_version: 4.36.0 | |
app_file: app.py | |
pinned: false | |
license: mit | |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference | |
<div style="display: flex; align-items: center;"> | |
<div style="width: 100px; margin-right: 10px; height:auto;" align="left"> | |
<img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left"> | |
</div> | |
<div style="flex-grow: 1;" align="center"> | |
<h2 align="center">LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression</h2> | |
</div> | |
</div> | |
<p align="center"> | |
| <a href="https://llmlingua.com/"><b>Project Page</b></a> | | |
<a href="https://aclanthology.org/2023.emnlp-main.825/"><b>LLMLingua</b></a> | | |
<a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua</b></a> | | |
<a href="https://arxiv.org/abs/2403."><b>LLMLingua-2</b></a> | | |
<a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>LLMLingua Demo</b></a> | | |
<a href="https://huggingface.co/spaces/microsoft/LLMLingua-2"><b>LLMLingua-2 Demo</b></a> | | |
</p> | |
## News | |
- π¦ We're excited to announce the release of **LLMLingua-2**, boasting a 3x-6x speed improvement over LLMLingua! For more information, check out our [paper](https://arxiv.org/abs/2403.), visit the [project page](https://llmlingua.com/llmlingua-2.html), and explore our [demo](https://huggingface.co/spaces/microsoft/LLMLingua-2). | |
- π€³ Talk slides are available in [AI Time Jan, 24](https://drive.google.com/file/d/1fzK3wOvy2boF7XzaYuq2bQ3jFeP1WMk3/view?usp=sharing). | |
- π₯ EMNLP'23 slides are available in [Session 5](https://drive.google.com/file/d/1GxQLAEN8bBB2yiEdQdW4UKoJzZc0es9t/view) and [BoF-6](https://drive.google.com/file/d/1LJBUfJrKxbpdkwo13SgPOqugk-UjLVIF/view). | |
- π Check out our new [blog post](https://medium.com/@iofu728/longllmlingua-bye-bye-to-middle-loss-and-save-on-your-rag-costs-via-prompt-compression-54b559b9ddf7) discussing RAG benefits and cost savings through prompt compression. See the script example [here](https://github.com/microsoft/LLMLingua/blob/main/examples/Retrieval.ipynb). | |
- π Visit our [project page](https://llmlingua.com/) for real-world case studies in RAG, Online Meetings, CoT, and Code. | |
- π¨βπ¦― Explore our ['./examples'](https://github.com/microsoft/LLMLingua/blob/main/examples) directory for practical applications, including [RAG](https://github.com/microsoft/LLMLingua/blob/main/examples/RAG.ipynb), [Online Meeting](https://github.com/microsoft/LLMLingua/blob/main/examples/OnlineMeeting.ipynb), [CoT](https://github.com/microsoft/LLMLingua/blob/main/examples/CoT.ipynb), [Code](https://github.com/microsoft/LLMLingua/blob/main/examples/Code.ipynb), and [RAG using LlamaIndex](https://github.com/microsoft/LLMLingua/blob/main/examples/RAGLlamaIndex.ipynb). | |
- πΎ LongLLMLingua is now part of the [LlamaIndex pipeline](https://github.com/run-llama/llama_index/blob/main/llama_index/postprocessor/longllmlingua.py), a widely-used RAG framework. | |
## TL;DR | |
LLMLingua utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss. | |
- [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://aclanthology.org/2023.emnlp-main.825/) (EMNLP 2023)<br> | |
_Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
LongLLMLingua mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens. | |
- [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br> | |
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
LLMLingua-2, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance. | |
- [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br> | |
_Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_ | |