File size: 15,541 Bytes
b4008c3
 
 
 
8afcc54
1132eaf
b4008c3
 
8afcc54
b4008c3
015321b
b4008c3
 
 
015321b
 
b4008c3
 
015321b
b4008c3
 
1132eaf
8afcc54
015321b
7bf25b0
 
acde6c9
 
 
 
1058c80
 
acde6c9
 
6d6095f
1132eaf
acde6c9
b590c0b
acde6c9
 
 
b590c0b
 
acde6c9
 
b4008c3
 
 
 
 
 
 
 
 
 
 
 
8afcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7df7de
8afcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4008c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8afcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4008c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8afcc54
df81c3a
b4008c3
 
 
8afcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
015321b
8afcc54
f7df7de
b590c0b
f7df7de
 
 
 
 
 
 
 
b590c0b
06b31f0
b590c0b
 
b4008c3
f7df7de
 
b590c0b
f7df7de
b590c0b
e9d7ce9
2e59878
e9d7ce9
b590c0b
f7df7de
b4008c3
06b31f0
b4008c3
06b31f0
b590c0b
06b31f0
b590c0b
b4008c3
f7df7de
1132eaf
b4008c3
 
 
 
f7df7de
b4008c3
 
 
 
06b31f0
fd3bac5
 
 
b4008c3
 
 
 
 
 
 
 
 
 
 
 
f7df7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22850a8
 
b4008c3
 
 
 
 
 
 
fd3bac5
b4008c3
 
 
 
 
5a1e312
b4008c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acde6c9
b4008c3
 
 
 
acde6c9
b4008c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b836071
b4008c3
015321b
 
 
 
 
b590c0b
22850a8
 
015321b
fd3bac5
 
 
 
 
 
22850a8
fd3bac5
b4008c3
1132eaf
 
 
e9d7ce9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"""Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py."""
# pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except
import os
import time
from dataclasses import asdict, dataclass
from types import SimpleNamespace

import gradio as gr
from ctransformers import AutoConfig, AutoModelForCausalLM

from mcli import predict
from huggingface_hub import hf_hub_download
from loguru import logger

URL = os.getenv("URL", "")
MOSAICML_API_KEY = os.getenv("MOSAICML_API_KEY", "")
if URL is None:
    raise ValueError("URL environment variable must be set")
if MOSAICML_API_KEY is None:
    raise ValueError("git environment variable must be set")

ns = SimpleNamespace(response="")

def predict0(prompt, bot):
    # logger.debug(f"{prompt=}, {bot=}, {timeout=}")
    logger.debug(f"{prompt=}, {bot=}")
    try:
        user_prompt = prompt
        generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
        print(assistant_prefix, end=" ", flush=True)

        response = ""
        for word in generator:
            print(word, end="", flush=True)
            response += word
            ns.response = response
        print("")
        logger.debug(f"{response=}")
    except Exception as exc:
        logger.error(exc)
        response = f"{exc=}"
    # bot = {"inputs": [response]}
    bot = [(prompt, response)]

    return prompt, bot


def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str):
    local_path = os.path.abspath(destination_folder)
    return hf_hub_download(
        repo_id=repo_id,
        filename=model_filename,
        local_dir=local_path,
        local_dir_use_symlinks=True,
    )


@dataclass
class GenerationConfig:
    temperature: float
    top_k: int
    top_p: float
    repetition_penalty: float
    max_new_tokens: int
    seed: int
    reset: bool
    stream: bool
    threads: int
    stop: list[str]


def format_prompt(system_prompt: str, user_prompt: str):
    """format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py"""

    system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
    user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
    assistant_prompt = "<|im_start|>assistant\n"

    return f"{system_prompt}{user_prompt}{assistant_prompt}"


def generate(
    llm: AutoModelForCausalLM,
    generation_config: GenerationConfig,
    system_prompt: str,
    user_prompt: str,
):
    """run model inference, will return a Generator if streaming is true"""

    return llm(
        format_prompt(
            system_prompt,
            user_prompt,
        ),
        **asdict(generation_config),
    )


class Chat:
    default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
    system_format = "<|im_start|>system\n{}<|im_end|>\n"

    def __init__(
        self, system: str = None, user: str = None, assistant: str = None
    ) -> None:
        if system is not None:
            self.set_system_prompt(system)
        else:
            self.reset_system_prompt()
        self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
        self.assistant = (
            assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
        )
        self.response_prefix = self.assistant.split("{}", maxsplit=1)[0]

    def set_system_prompt(self, system_prompt):
        # self.system = self.system_format.format(system_prompt)
        return system_prompt

    def reset_system_prompt(self):
        return self.set_system_prompt(self.default_system_prompt)

    def history_as_formatted_str(self, system, history) -> str:
        system = self.system_format.format(system)
        text = system + "".join(
            [
                "\n".join(
                    [
                        self.user.format(item[0]),
                        self.assistant.format(item[1]),
                    ]
                )
                for item in history[:-1]
            ]
        )
        text += self.user.format(history[-1][0])
        text += self.response_prefix
        # stopgap solution to too long sequences
        if len(text) > 4500:
            # delete from the middle between <|im_start|> and <|im_end|>
            # find the middle ones, then expand out
            start = text.find("<|im_start|>", 139)
            end = text.find("<|im_end|>", 139)
            while end < len(text) and len(text) > 4500:
                end = text.find("<|im_end|>", end + 1)
                text = text[:start] + text[end + 1 :]
        if len(text) > 4500:
            # the nice way didn't work, just truncate
            # deleting the beginning
            text = text[-4500:]

        return text

    def clear_history(self, history):
        return []

    def turn(self, user_input: str):
        self.user_turn(user_input)
        return self.bot_turn()

    def user_turn(self, user_input: str, history):
        history.append([user_input, ""])
        return user_input, history

    def bot_turn(self, system, history):
        conversation = self.history_as_formatted_str(system, history)
        assistant_response = call_inf_server(conversation)
        history[-1][-1] = assistant_response
        print(system)
        print(history)
        return "", history


def call_inf_server(prompt):
    try:
        response = predict(
            URL,
            {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
            timeout=70,
        )
        # print(f'prompt: {prompt}')
        # print(f'len(prompt): {len(prompt)}')
        response = response["outputs"][0]
        # print(f'len(response): {len(response)}')
        # remove spl tokens from prompt
        spl_tokens = ["<|im_start|>", "<|im_end|>"]
        clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "")

        # return response[len(clean_prompt) :]  # remove the prompt
        try:
            user_prompt = prompt
            generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
            print(assistant_prefix, end=" ", flush=True)
            for word in generator:
                print(word, end="", flush=True)
            print("")
            response = word
        except Exception as exc:
            logger.error(exc)
            response = f"{exc=}"
        return response

    except Exception as e:
        # assume it is our error
        # just wait and try one more time
        print(e)
        time.sleep(1)
        response = predict(
            URL,
            {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
            timeout=70,
        )
        # print(response)
        response = response["outputs"][0]
        return response[len(prompt) :]  # remove the prompt


logger.info("start dl")
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin"""

repo_id = "TheBloke/mpt-30B-chat-GGML"
model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin"
destination_folder = "models"

download_mpt_quant(destination_folder, repo_id, model_filename)

logger.info("done dl")

config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192)
llm = AutoModelForCausalLM.from_pretrained(
    os.path.abspath("models/mpt-30b-chat.ggmlv0.q4_1.bin"),
    model_type="mpt",
    config=config,
)

system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."

generation_config = GenerationConfig(
    temperature=0.2,
    top_k=0,
    top_p=0.9,
    repetition_penalty=1.0,
    max_new_tokens=512,  # adjust as needed
    seed=42,
    reset=False,  # reset history (cache)
    stream=True,  # streaming per word/token
    threads=int(os.cpu_count() / 2),  # adjust for your CPU
    stop=["<|im_end|>", "|<"],
)

user_prefix = "[user]: "
assistant_prefix = "[assistant]: "


css = """
    .importantButton {
        background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
        border: none !important;
    }
    .importantButton:hover {
        background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
        border: none !important;
    }
    .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
    .xsmall {font-size: x-small;}
"""

with gr.Blocks(
    title="mpt-30b-ggml-chat",
    theme=gr.themes.Soft(text_size="sm"),
    css=css,
) as block:
    with gr.Accordion("🎈 Info", open=False):
        gr.HTML(
            """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
        )
        gr.Markdown(
            """<h4><center>mpt-30b-ggml-chat</center></h4>

            This demo is of [TheBloke/mpt-30B-chat-GGML](https://huggingface.co/TheBloke/mpt-30B-chat-GGML).

            It takes about >40 seconds to get a response. Restarting the space takes about 5 minutes if the space is asleep due to inactivity. If the space crashes for some reason, it will also take about 5 minutes to restart. You need to refresh the browser to reload the new space.
            """,
            elem_classes="xsmall"
        )
    conversation = Chat()
    chatbot = gr.Chatbot().style(height=700)  # 500
    buff = gr.Textbox(show_label=False)
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Ask me anything (press Enter or click Submit to send)",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Submit", elem_classes="xsmall")
                stop = gr.Button("Stop", visible=False)
                clear = gr.Button("Clear", visible=False)
    with gr.Row(visible=False):
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column(scale=2):
                    system = gr.Textbox(
                        label="System Prompt",
                        value=Chat.default_system_prompt,
                        show_label=False,
                    ).style(container=False)
                with gr.Column():
                    with gr.Row():
                        change = gr.Button("Change System Prompt")
                        reset = gr.Button("Reset System Prompt")

    with gr.Accordion("Example inputs", open=True):
        etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
        examples = gr.Examples(
            examples=[
                ["Explain the plot of Cinderella in a sentence."],
                [
                    "How long does it take to become proficient in French, and what are the best methods for retaining information?"
                ],
                ["What are some common mistakes to avoid when writing code?"],
                ["Build a prompt to generate a beautiful portrait of a horse"],
                ["Suggest four metaphors to describe the benefits of AI"],
                ["Write a pop song about leaving home for the sandy beaches."],
                ["Write a summary demonstrating my ability to tame lions"],
                ["鲁迅和周树人什么关系"],
                ["从前有一头牛,这头牛后面有什么?"],
                ["正无穷大加一大于正无穷大吗?"],
                ["正无穷大加正无穷大大于正无穷大吗?"],
                ["-2的平方根等于什么"],
                ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
                ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
                ["鲁迅和周树人什么关系 用英文回答"],
                ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
                [f"{etext} 翻成中文,列出3个版本"],
                [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
                ["js 判断一个数是不是质数"],
                ["js 实现python 的 range(10)"],
                ["js 实现python 的 [*(range(10)]"],
                ["假定 1 + 2 = 4, 试求 7 + 8"],
                ["Erkläre die Handlung von Cinderella in einem Satz."],
                ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
            ],
            inputs=[msg],
            examples_per_page=30,
        )

    # with gr.Row():
    with gr.Accordion("Disclaimer", open=False):
        gr.Markdown(
            "Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce "
            "factually accurate information. MPT-30B was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )
    with gr.Row(visible=False):
        gr.Markdown(
            "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
            elem_classes=["disclaimer"],
        )

    _ = """
    submit_event = msg.submit(
        fn=conversation.user_turn,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=conversation.bot_turn,
        inputs=[system, chatbot],
        outputs=[msg, chatbot],
        queue=True,
    )
    submit_click_event = submit.click(
        fn=conversation.user_turn,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        # fn=conversation.bot_turn,
        inputs=[system, chatbot],
        outputs=[msg, chatbot],
        queue=True,
    )

    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False).then(
        fn=conversation.clear_history,
        inputs=[chatbot],
        outputs=[chatbot],
        queue=False,
    )
    change.click(
        fn=conversation.set_system_prompt,
        inputs=[system],
        outputs=[system],
        queue=False,
    )
    reset.click(
        fn=conversation.reset_system_prompt,
        inputs=[],
        outputs=[system],
        queue=False,
    )
    # """

    msg.submit(
        # fn=conversation.user_turn,
        fn=predict0,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        show_progress="full",
        api_name="predict"
    )
    submit.click(
        # fn=conversation.user_turn,
        fn=predict0,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        show_progress="full",
    )

    # update buff Textbox
    block.load(lambda: ns.response, [], [buff])

# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
block.queue(concurrency_count=5, max_size=20).launch(debug=True)