File size: 27,471 Bytes
0e43c47
59dd739
0e43c47
 
c47c7dc
 
59dd739
55d47b9
 
 
c47c7dc
 
59dd739
 
 
0e43c47
 
 
c47c7dc
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47c7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d47b9
 
 
 
 
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
55d47b9
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43c47
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43c47
55d47b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43c47
 
 
 
 
 
 
 
 
 
 
 
 
55d47b9
 
 
 
 
 
0e43c47
 
 
 
 
db283f8
0e43c47
55d47b9
 
 
 
 
 
 
 
 
 
 
 
db283f8
0e43c47
55d47b9
0e43c47
 
55d47b9
59dd739
0e43c47
 
 
 
 
55d47b9
59dd739
55d47b9
 
 
 
 
 
 
 
 
 
 
0e43c47
 
db283f8
0e43c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d47b9
c47c7dc
55d47b9
0e43c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d47b9
 
 
 
 
 
0e43c47
55d47b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import os
import re
import uuid
import json
import argparse
import torch
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass
from collections import defaultdict

def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir', default='/data/mohamed/data')
    parser.add_argument('--aim_repo', default='/data/mohamed/')
    parser.add_argument('--ckpt', default='electra-base.pt')
    parser.add_argument('--aim_exp', default='mimic-decisions-1215')
    parser.add_argument('--label_encoding', default='multiclass')
    parser.add_argument('--multiclass', action='store_true')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--save_losses', action='store_true')
    parser.add_argument('--task', default='token', choices=['seq', 'token'])
    parser.add_argument('--max_len', type=int, default=512)
    parser.add_argument('--num_layers', type=int, default=3)
    parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
    parser.add_argument('--model', default='roberta-base',)
    parser.add_argument('--model_name', default='google/electra-base-discriminator',)
    parser.add_argument('--gpu', default='0')
    parser.add_argument('--grad_accumulation', default=2, type=int)
    parser.add_argument('--pheno_id', type=int)
    parser.add_argument('--unseen_pheno', type=int)
    parser.add_argument('--text_subset')
    parser.add_argument('--pheno_n', type=int, default=500)
    parser.add_argument('--hidden_size', type=int, default=100)
    parser.add_argument('--emb_size', type=int, default=400)
    parser.add_argument('--total_steps', type=int, default=5000)
    parser.add_argument('--train_log', type=int, default=500)
    parser.add_argument('--val_log', type=int, default=1000)
    parser.add_argument('--seed', default = '0')
    parser.add_argument('--num_phenos', type=int, default=10)
    parser.add_argument('--num_decs', type=int, default=9)
    parser.add_argument('--num_umls_tags', type=int, default=33)
    parser.add_argument('--batch_size', type=int, default=8)
    parser.add_argument('--pos_weight', type=float, default=1.25)
    parser.add_argument('--alpha_distil', type=float, default=1)
    parser.add_argument('--distil', action='store_true')
    parser.add_argument('--distil_att', action='store_true')
    parser.add_argument('--distil_ckpt')
    parser.add_argument('--use_umls', action='store_true')
    parser.add_argument('--include_nolabel', action='store_true')
    parser.add_argument('--truncate_train', action='store_true')
    parser.add_argument('--truncate_eval', action='store_true')
    parser.add_argument('--load_ckpt', action='store_true')
    parser.add_argument('--gradio', action='store_true')
    parser.add_argument('--optuna', action='store_true')
    parser.add_argument('--mimic_data', action='store_true')
    parser.add_argument('--eval_only', action='store_true')
    parser.add_argument('--lr', type=float, default=4e-5)
    parser.add_argument('--resample', default='')
    parser.add_argument('--verbose', type=bool, default=True)
    parser.add_argument('--use_crf', type=bool)
    parser.add_argument('--print_spans', action='store_true')
    return parser.parse_args()
args = get_args()

if args.task == 'seq' and args.pheno_id is not None:
    args.num_labels = 1
elif args.task == 'seq':
    args.num_labels = args.num_phenos
elif args.task == 'token':
    if args.use_umls:
        args.num_labels = args.num_umls_tags
    else:
        args.num_labels = args.num_decs
    if args.label_encoding == 'multiclass':
        args.num_labels = args.num_labels * 2 + 1
    elif args.label_encoding == 'bo':
        args.num_labels *= 2
    elif args.label_encoding == 'boe':
        args.num_labels *= 3

@dataclass
class KeyDef:
    key: str
    name: str
    desc: str = ''
    color: str = 'lightblue'
    symbol: str = ''

class AnnotationState:
    def __init__(self):
        self.entity_regex = r'\[\@.*?\#.*?\*\](?!\#)'
        self.recommend_regex = r'\[\$.*?\#.*?\*\](?!\#)'
        self.history = []
        self.config_file = "configs/default.config"
        self.press_commands = self.read_config()
        # Internal state holds the actual annotations
        self.annotations = []
        self.raw_text = ""
        
    def read_config(self) -> List[KeyDef]:
        if not os.path.exists(self.config_file):
            default_config = [{
                'key': key,
                'name': name, 
                'color': color,
                'symbol': symbol
                }
                for key, name, color, symbol in zip(keys, categories, colors, unicode_symbols)
                ]
            os.makedirs("configs", exist_ok=True)
            with open(self.config_file, 'w') as fp:
                json.dump(default_config, fp)
        
        with open(self.config_file, 'r') as fp:
            config_dict = json.load(fp)
        
        return [KeyDef(**entry) for entry in config_dict]

    def get_cmd_by_key(self, key: str) -> Optional[KeyDef]:
        return next((cmd for cmd in self.press_commands if cmd.key == key), None)

    def set_text(self, text: str):
        """Initialize with new text, clearing annotations"""
        self.raw_text = text
        self.annotations = []
        self.history = []
        
    def add_annotation(self, start: int, end: int, entity_type: str) -> str:
        """Add new annotation and return display text"""
        # Save current state to history
        self.history.append((self.raw_text, list(self.annotations)))
        if len(self.history) > 20:
            self.history.pop(0)
            
        # Add new annotation
        self.annotations.append((start, end, entity_type))
        return self.get_display_text()

    def remove_annotation(self, start: int, end: int) -> str:
        """Remove annotation at position if it exists, splitting spans if needed"""
        self.history.append((self.raw_text, list(self.annotations)))
        
        new_annotations = []
        
        for a in self.annotations:
            annotation_start, annotation_end, entity_type = a
            
            # If the current annotation does not overlap, keep it as is
            if annotation_end < start or annotation_start > end:
                new_annotations.append(a)
            
            # If the removed span is a proper subset, split the annotation
            elif annotation_start < start and annotation_end > end:
                new_annotations.append((annotation_start, start - 1, entity_type))
                new_annotations.append((end + 1, annotation_end, entity_type))
            
            # If there's overlap with the start, but not the end
            elif annotation_start < start <= annotation_end:
                new_annotations.append((annotation_start, start - 1, entity_type))
            
            # If there's overlap with the end, but not the start
            elif annotation_start <= end < annotation_end:
                new_annotations.append((end + 1, annotation_end, entity_type))
        
        self.annotations = new_annotations
        return self.get_display_text()

    def undo(self) -> str:
        """Undo last annotation action"""
        if not self.history:
            return self.get_display_text()
            
        self.raw_text, self.annotations = self.history.pop()
        return self.get_display_text()

    def get_display_text(self) -> str:
        """Generate display text with HTML formatting for annotations"""
        if not self.annotations:
            return f'<div id="annotated-text">{self.raw_text}</div> <div id="legend"></div>'

        # Sort annotations by start position
        sorted_annotations = sorted(self.annotations, key=lambda x: (x[0], -x[1]))
        
        # Build display text with HTML spans
        result = ['<div id="annotated-text">']
        last_end = 0
        
        for start, end, entity_type in sorted_annotations:
            if start < last_end and end > last_end:
                start = last_end
            elif start < last_end:
                continue

                
            # Add text before annotation
            result.append(self.raw_text[last_end:start])
            
            # Add annotated text with highlighting
            text = self.raw_text[start:end]
            cmd = self.get_cmd_by_key(entity_type)
            color = cmd.color
            result.append(f'<span style="background-color: {color};" title="{cmd.name}">{text}</span>') # Nicer tooltip
            
            last_end = end
            
        # Add remaining text
        result.append(self.raw_text[last_end:])
        result.append('</div>')

        # Generate legend
        legend = ['<div id="legend" style="margin-top: 10px;"><span style="font-weight: bold;">Legend:</span > '] # Margin and bold legend title
        used_categories = sorted(list(set([a[2] for a in self.annotations])))
        for cat in used_categories:
            cmd = self.get_cmd_by_key(cat)
            legend.append(f'<span style="background-color: {cmd.color}; padding: 3px 5px; border-radius: 3px; margin-right: 5px; font-size:0.9em; display: inline-block; vertical-align: middle; color: black; font-family: sans-serif;">{cmd.name}</span>') # Improved legend item styling
        legend.append('</div>')
        result.extend(legend)

        return "".join(result)


    def get_annotated_text(self, annotator_id=None, discharge_summary_id=None) -> dict:
        """Generate a dictionary containing annotation data."""
        unique_id = str(uuid.uuid4())[:8]
        annotations = []
        if self.annotations:
            sorted_annotations = sorted(self.annotations, key=lambda x: (x[0], -x[1]))
            for idx, (start, end, entity_type) in enumerate(sorted_annotations):
                cmd = self.get_cmd_by_key(entity_type)
                annotations.append({
                    "decision": self.raw_text[start:end],
                    "category": f'Category {categories.index(cmd.name) + 1}: {cmd.name}',
                    "start_offset": start,
                    "end_offset": end,
                    "annotation_id": f'{unique_id}_{idx}'
                })

        return {
            "annotator_id": annotator_id if annotator_id else None,
            "discharge_summary_id": discharge_summary_id if discharge_summary_id else None,
            "annotations": annotations
        }

def init_text(text):
    if text:
        state.set_text(text)
        return state.get_display_text()
    return "<div id='annotated-text'>Enter text to begin...</div>"

def add_entity(cmd_key, start: int, end: int):
    """Handle adding new entity annotations"""
    if start == end:
        return state.get_display_text(), "No text selected"
        
    cmd = state.get_cmd_by_key(cmd_key)
    if not cmd:
        return state.get_display_text(), "Invalid command"
        
    new_text = state.add_annotation(start, end, cmd.key)
    return new_text, f"Added {cmd.name} entity"

def remove_entity(start: int, end: int):
    """Handle removal of annotations"""
    if start == end:
        return state.get_display_text(), "No text selected"
    return state.remove_annotation(start, end), "Removed annotation"

def undo():
    """Handle undoing the last action"""
    return state.undo(), "Undid last action"

def download_annotations(annotator_id, discharge_summary_id):
    """Generates and provides annotation data for download."""
    annotation_data = state.get_annotated_text(annotator_id, discharge_summary_id)
    with open(OUTPUT_PATH, 'w') as f:
        json.dump(annotation_data, f, indent=4)
    return OUTPUT_PATH



def refresh_annotations(annotator_id, discharge_summary_id):
    """Refreshes the displayed annotation JSON."""
    return state.get_annotated_text(annotator_id, discharge_summary_id)


def clear_annotations():
    state.set_text(state.raw_text)  # Clears annotations by setting empty text
    return gr.update(interactive=True, elem_classes=[]), state.get_display_text() # added value

def model_predict(text):
    """Placeholder for model prediction logic"""
    output, t2c = predict(text)
    spans = indicators_to_spans(output.argmax(-1), t2c)
    spans = [(s, e, keys[c]) for c, s, e in spans]
    return spans

def apply_predictions(text):
    predictions = model_predict(text)
    state.set_text(text)
    for start, end, entity_type in predictions:
        state.add_annotation(start, end, entity_type)
    return state.get_display_text()

state = AnnotationState()
all_keys = [f'"{cmd.key}"' for cmd in state.press_commands]
key_list_str = f'[{", ".join(all_keys)}]'
shortcut_js = shortcut_js_template%key_list_str
        

def postprocess_labels(text, logits, t2c):
    tags = [None for _ in text]
    labels = logits.argmax(-1)
    for i,cat in enumerate(labels):
        if cat != OTHERS_ID:
            char_ids = t2c(i)
            if char_ids is None:
                continue
            for idx in range(char_ids.start, char_ids.end):
                if tags[idx] is None and idx < len(text):
                    tags[idx] = categories[cat // 2]
    for i in range(len(text)-1):
        if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
            tags[i] = tags[i-1]
    return tags

def indicators_to_spans(labels, t2c = None):
    def add_span(c, start, end):
        if t2c(start) is None or t2c(end) is None:
            start, end = -1, -1
        else:
            start = t2c(start).start
            end = t2c(end).end
        span = (c, start, end)
        spans.add(span)

    spans = set()
    num_tokens = len(labels)
    num_classes = OTHERS_ID // 2
    start = None
    cls = None
    for t in range(num_tokens):
        if start and labels[t] == cls + 1:
            continue
        elif start:
            add_span(cls // 2, start, t - 1)
            start = None
        # if not start and labels[t] in [2*x for x in range(num_classes)]:
        if not start and labels[t] != OTHERS_ID:
            start = t
            cls = int(labels[t]) // 2 * 2
    return spans

def extract_date(text):
    pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
    match = re.search(pattern, text).group(1)
    start, end = None, None
    for i, c in enumerate(match):
        if start is None and c.isnumeric():
            start = i
        elif c.isnumeric():
            end = i + 1
    match = match[start:end]
    return match



device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)

def predict(text):
    encoding = tokenizer.encode_plus(text)
    x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
    mask = torch.ones_like(x)
    output = model.generate(x, mask)[0]
    return output, encoding.token_to_chars

def process(text):
    if text is not None:
        output, t2c = predict(text)
        tags = postprocess_labels(text, output, t2c)
        with open('log.csv', 'a') as f:
            f.write(f'{datetime.now()},{text}\n')
        return list(zip(text, tags))
    else:
        return text

def process_sum(*inputs):
    global sum_c
    dates = {}
    for i in range(sum_c):
        text = inputs[i]
        output, t2c = predict(text)
        spans = indicators_to_spans(output.argmax(-1), t2c)
        date = extract_date(text)
        present_decs = set(cat for cat, _, _ in spans)
        decs = {k: [] for k in sorted(present_decs)}
        for c, s, e in spans:
            decs[c].append(text[s:e])
        dates[date] = decs

    out = ""
    for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
        out += f'## **[{date}]**\n\n'
        decs = dates[date]
        for c in decs:
            out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
            for dec in decs[c]:
                out += f'{dec}\n\n'

    return out


def get_structured_data(*inputs):
    global sum_c
    data = []
    for i in range(sum_c):
        text = inputs[i]
        output, t2c = predict(text)
        spans = indicators_to_spans(output.argmax(-1), t2c)
        date = extract_date(text)
        for c, s, e in spans:
            data.append({
                'date': date,
                'timestamp': parser.parse(date),
                'decision_cat': c,
                'decision_type': categories[c], 'details': text[s:e]})
    return data

def update_inputs(inputs):
    outputs = []
    if inputs is None:
        c = 0
    else:
        inputs = [open(f.name).read() for f in inputs]
        for i, text in enumerate(inputs):
            outputs.append(gr.update(value=text, visible=True))
        c = len(inputs)

    n = SUM_INPUTS
    for i in range(n - c):
        outputs.append(gr.update(value='', visible=False))
    global sum_c; sum_c = c
    global structured_data
    structured_data = get_structured_data(*inputs) if inputs is not None else []
    return outputs

def add_ex(*inputs):
    global sum_c
    new_idx = sum_c
    if new_idx < SUM_INPUTS:
        out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
        sum_c += 1
    else:
        out = inputs
    return out

def sub_ex(*inputs):
    global sum_c
    new_idx = sum_c - 1
    if new_idx > 0:
        out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
        sum_c -= 1
    else:
        out = inputs
    return out


def create_timeline_plot(data: List[Dict[str, Any]]):
    df = pd.DataFrame(data)
    # df['int_cat'] = pd.factorize(df['decision_type'])[0]
    # df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
    # fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
    #                  title='Patient Timeline')
    # fig.update_layout(
    #         yaxis=dict(
    #             tickmode='array',
    #             tickvals=df['int_cat'].unique(),
    #             ticktext=df['decision_type'].unique()),
    #         xaxis_title='Date',
    #         yaxis_title='Category')
    fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
                   stripmode = "overlay",
                     title='Patient Timeline')
    fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
    fig.update_layout(height=600)
    return fig

def filter_timeline(decision_types: str, start_date: str, end_date: str) -> px.scatter:
    global structured_data
    filtered_data = structured_data
    if 'All' not in decision_types:
        filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
    
    start = parser.parse(start_date)
    end = parser.parse(end_date)
    filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
    
    return create_timeline_plot(filtered_data)

def generate_summary(*inputs) -> str:
    global structured_data
    structured_data = get_structured_data(*inputs)
    
    dates = defaultdict(lambda: defaultdict(list))
    for event in structured_data:
        dates[event['date']][event['decision_cat']].append(event['details'])

    out = ""
    for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
        out += f'## **[{date}]**\n\n'
        decs = dates[date]
        for c in decs:
            out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
            for dec in decs[c]:
                out += f'{dec}\n\n'
    return out, create_timeline_plot(structured_data)

global sum_c
sum_c = 1
structured_data = []

device = model.backbone.device

with gr.Blocks(head=shortcut_js,
                title='MedDecXtract', css=css) as demo:
    gr.Image('assets/logo.png', height=100, container=False, show_download_button=False)
    gr.Markdown(title)
    with gr.Tab("Decision Extraction & Classification"):
        gr.Markdown(label_desc)
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
                text_input = gr.Textbox(
                        # value=examples[0],
                        label="",
                        placeholder="Enter text here...")
                text_btn = gr.Button('Run')
            with gr.Column():
                gr.Markdown("## Labeled Summary or Note"),
                text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
        gr.Examples(text_examples, inputs=text_input)
    with gr.Tab("Patient Visualization"):
        gr.Markdown(vis_desc)
        with gr.Column():
            sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
            sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
                for i in range(2, SUM_INPUTS + 1)])
            with gr.Row():
                ex_add = gr.Button("+")
                ex_sub = gr.Button("-")
            upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
            gr.Examples(sum_examples, inputs=upload,
                    fn = update_inputs, outputs=sum_inputs, run_on_click=True)
        with gr.Column():
            with gr.Row():
                decision_type = gr.Dropdown(["All"] + categories,
                                            multiselect=True,
                                            label="Decision Type", value="All")
                start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
                end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
            
            filter_button = gr.Button("Filter Timeline")
            
            timeline_plot = gr.Plot()
            
            summary_button = gr.Button("Generate Summary")
            with gr.Accordion('Summary'):
                summary_output = gr.Markdown(elem_id='sum-out') #gr.Textbox(label="Summary")
    with gr.Tab("Interactive Narrative Annotator"):
        gr.Markdown(annotator_desc)
        with gr.Row():
            with gr.Column():
                annot_text_input = gr.Textbox(
                    label="Enter Text to Annotate",
                    placeholder="Enter or paste text here...",
                    lines=5,
                    elem_id='annot_text_input'
                )
                gr.Examples(text_examples, inputs=annot_text_input) 
                msg_output = gr.Textbox(label="Status Messages", interactive=False)
            display_area = gr.HTML(
                label="Annotated Text",
                value="<div id='annotated-text'><i>Output box</i></div>"
            )
        
        k = 3  # Set the maximum number of buttons per row
        num_buttons = len(state.press_commands)
        rows = (num_buttons + k - 1) // k
        entity_buttons = []
        with gr.Group():
            predict_btn = gr.Button("Generate Predictions", size='lg', variant='primary')
            for i in range(rows):
                with gr.Row():
                    for j in range(min(k, num_buttons - i * k)):
                        real_idx = i * k + j
                        cmd = state.press_commands[real_idx]
                        entity_buttons.append(
                            gr.Button(f"{cmd.symbol} {cmd.name} ({cmd.key})",
                                    elem_id=f'btn_{cmd.key}',
                                    size='sm'))
                    if i == (rows - 1):
                        remove_btn = gr.Button("Remove (q)", size='sm', variant='secondary', elem_id='btn_q')
                        undo_btn = gr.Button("Undo (z)", size='sm', elem_id='btn_z')
            clear_btn = gr.Button("Clear Annotations", size='lg', variant='stop')

        
        with gr.Accordion("Download/View Annotations \U0001F4BE", open=False): # Combined Accordion
            with gr.Row():
                annotator_id = gr.Textbox(label="Annotator ID", placeholder="Enter your annotator ID")
                discharge_summary_id = gr.Textbox(label="Discharge Summary ID", placeholder="Enter the discharge summary ID")
            
            with gr.Row():
                download_file = gr.File(interactive=False, visible=True, label="Download") # download_btn renamed and made into gr.File
                annotations_json = gr.JSON(label="Annotations JSON")
            
            refresh_btn = gr.Button("🔄 Refresh Annotations", elem_id="refresh_btn") # Renamed for clarity
            download_btn = gr.Button("Download Annotated Text", elem_id="download_btn") # Added a button to trigger download

        
        # Hidden state components for selection
        selection_start = gr.Number(value=0, visible=False)
        selection_end = gr.Number(value=0, visible=False)

    gr.Markdown(desc)

    # Functions
    # Wire up event handlers
    annot_text_input.change(init_text, annot_text_input, display_area)
    
    # Wire up the buttons with the selection JavaScript
    for btn, cmd in zip(entity_buttons, state.press_commands):
        btn.click(lambda s=None, e=None, c=cmd.key: add_entity(c, s, e),[selection_start, selection_end], [display_area, msg_output], js=select_js).then(
        lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),  # Disable input if annotations exist
        outputs=annot_text_input
    )
        
    remove_btn.click( remove_entity, [selection_start, selection_end], [display_area, msg_output], js=select_js).then(
        lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
        outputs=annot_text_input
    )
    
    undo_btn.click(undo, None, [display_area, msg_output]).then(
        lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
        outputs=annot_text_input
    )
    
    download_btn.click(download_annotations, [annotator_id, discharge_summary_id], download_file) # Output to download_file
    refresh_btn.click(refresh_annotations, [annotator_id, discharge_summary_id], annotations_json) # No change in functionality


    clear_btn.click(clear_annotations, outputs=[annot_text_input, display_area])

    predict_btn.click(apply_predictions, annot_text_input, display_area).then(
        lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
        outputs=text_input
    )

    text_input.submit(process, inputs=text_input, outputs=text_out)
    text_btn.click(process, inputs=text_input, outputs=text_out)
    upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
    ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
    ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
    filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
    summary_button.click(generate_summary, inputs=sum_inputs, outputs=[summary_output, timeline_plot])
demo.launch(share=True)