Spaces:
Running
Running
File size: 27,471 Bytes
0e43c47 59dd739 0e43c47 c47c7dc 59dd739 55d47b9 c47c7dc 59dd739 0e43c47 c47c7dc 55d47b9 c47c7dc 0e43c47 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 0e43c47 55d47b9 0e43c47 55d47b9 0e43c47 55d47b9 0e43c47 db283f8 0e43c47 55d47b9 db283f8 0e43c47 55d47b9 0e43c47 55d47b9 59dd739 0e43c47 55d47b9 59dd739 55d47b9 0e43c47 db283f8 0e43c47 55d47b9 c47c7dc 55d47b9 0e43c47 55d47b9 0e43c47 55d47b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
import os
import re
import uuid
import json
import argparse
import torch
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass
from collections import defaultdict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='/data/mohamed/data')
parser.add_argument('--aim_repo', default='/data/mohamed/')
parser.add_argument('--ckpt', default='electra-base.pt')
parser.add_argument('--aim_exp', default='mimic-decisions-1215')
parser.add_argument('--label_encoding', default='multiclass')
parser.add_argument('--multiclass', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_losses', action='store_true')
parser.add_argument('--task', default='token', choices=['seq', 'token'])
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
parser.add_argument('--model', default='roberta-base',)
parser.add_argument('--model_name', default='google/electra-base-discriminator',)
parser.add_argument('--gpu', default='0')
parser.add_argument('--grad_accumulation', default=2, type=int)
parser.add_argument('--pheno_id', type=int)
parser.add_argument('--unseen_pheno', type=int)
parser.add_argument('--text_subset')
parser.add_argument('--pheno_n', type=int, default=500)
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--emb_size', type=int, default=400)
parser.add_argument('--total_steps', type=int, default=5000)
parser.add_argument('--train_log', type=int, default=500)
parser.add_argument('--val_log', type=int, default=1000)
parser.add_argument('--seed', default = '0')
parser.add_argument('--num_phenos', type=int, default=10)
parser.add_argument('--num_decs', type=int, default=9)
parser.add_argument('--num_umls_tags', type=int, default=33)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--pos_weight', type=float, default=1.25)
parser.add_argument('--alpha_distil', type=float, default=1)
parser.add_argument('--distil', action='store_true')
parser.add_argument('--distil_att', action='store_true')
parser.add_argument('--distil_ckpt')
parser.add_argument('--use_umls', action='store_true')
parser.add_argument('--include_nolabel', action='store_true')
parser.add_argument('--truncate_train', action='store_true')
parser.add_argument('--truncate_eval', action='store_true')
parser.add_argument('--load_ckpt', action='store_true')
parser.add_argument('--gradio', action='store_true')
parser.add_argument('--optuna', action='store_true')
parser.add_argument('--mimic_data', action='store_true')
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--lr', type=float, default=4e-5)
parser.add_argument('--resample', default='')
parser.add_argument('--verbose', type=bool, default=True)
parser.add_argument('--use_crf', type=bool)
parser.add_argument('--print_spans', action='store_true')
return parser.parse_args()
args = get_args()
if args.task == 'seq' and args.pheno_id is not None:
args.num_labels = 1
elif args.task == 'seq':
args.num_labels = args.num_phenos
elif args.task == 'token':
if args.use_umls:
args.num_labels = args.num_umls_tags
else:
args.num_labels = args.num_decs
if args.label_encoding == 'multiclass':
args.num_labels = args.num_labels * 2 + 1
elif args.label_encoding == 'bo':
args.num_labels *= 2
elif args.label_encoding == 'boe':
args.num_labels *= 3
@dataclass
class KeyDef:
key: str
name: str
desc: str = ''
color: str = 'lightblue'
symbol: str = ''
class AnnotationState:
def __init__(self):
self.entity_regex = r'\[\@.*?\#.*?\*\](?!\#)'
self.recommend_regex = r'\[\$.*?\#.*?\*\](?!\#)'
self.history = []
self.config_file = "configs/default.config"
self.press_commands = self.read_config()
# Internal state holds the actual annotations
self.annotations = []
self.raw_text = ""
def read_config(self) -> List[KeyDef]:
if not os.path.exists(self.config_file):
default_config = [{
'key': key,
'name': name,
'color': color,
'symbol': symbol
}
for key, name, color, symbol in zip(keys, categories, colors, unicode_symbols)
]
os.makedirs("configs", exist_ok=True)
with open(self.config_file, 'w') as fp:
json.dump(default_config, fp)
with open(self.config_file, 'r') as fp:
config_dict = json.load(fp)
return [KeyDef(**entry) for entry in config_dict]
def get_cmd_by_key(self, key: str) -> Optional[KeyDef]:
return next((cmd for cmd in self.press_commands if cmd.key == key), None)
def set_text(self, text: str):
"""Initialize with new text, clearing annotations"""
self.raw_text = text
self.annotations = []
self.history = []
def add_annotation(self, start: int, end: int, entity_type: str) -> str:
"""Add new annotation and return display text"""
# Save current state to history
self.history.append((self.raw_text, list(self.annotations)))
if len(self.history) > 20:
self.history.pop(0)
# Add new annotation
self.annotations.append((start, end, entity_type))
return self.get_display_text()
def remove_annotation(self, start: int, end: int) -> str:
"""Remove annotation at position if it exists, splitting spans if needed"""
self.history.append((self.raw_text, list(self.annotations)))
new_annotations = []
for a in self.annotations:
annotation_start, annotation_end, entity_type = a
# If the current annotation does not overlap, keep it as is
if annotation_end < start or annotation_start > end:
new_annotations.append(a)
# If the removed span is a proper subset, split the annotation
elif annotation_start < start and annotation_end > end:
new_annotations.append((annotation_start, start - 1, entity_type))
new_annotations.append((end + 1, annotation_end, entity_type))
# If there's overlap with the start, but not the end
elif annotation_start < start <= annotation_end:
new_annotations.append((annotation_start, start - 1, entity_type))
# If there's overlap with the end, but not the start
elif annotation_start <= end < annotation_end:
new_annotations.append((end + 1, annotation_end, entity_type))
self.annotations = new_annotations
return self.get_display_text()
def undo(self) -> str:
"""Undo last annotation action"""
if not self.history:
return self.get_display_text()
self.raw_text, self.annotations = self.history.pop()
return self.get_display_text()
def get_display_text(self) -> str:
"""Generate display text with HTML formatting for annotations"""
if not self.annotations:
return f'<div id="annotated-text">{self.raw_text}</div> <div id="legend"></div>'
# Sort annotations by start position
sorted_annotations = sorted(self.annotations, key=lambda x: (x[0], -x[1]))
# Build display text with HTML spans
result = ['<div id="annotated-text">']
last_end = 0
for start, end, entity_type in sorted_annotations:
if start < last_end and end > last_end:
start = last_end
elif start < last_end:
continue
# Add text before annotation
result.append(self.raw_text[last_end:start])
# Add annotated text with highlighting
text = self.raw_text[start:end]
cmd = self.get_cmd_by_key(entity_type)
color = cmd.color
result.append(f'<span style="background-color: {color};" title="{cmd.name}">{text}</span>') # Nicer tooltip
last_end = end
# Add remaining text
result.append(self.raw_text[last_end:])
result.append('</div>')
# Generate legend
legend = ['<div id="legend" style="margin-top: 10px;"><span style="font-weight: bold;">Legend:</span > '] # Margin and bold legend title
used_categories = sorted(list(set([a[2] for a in self.annotations])))
for cat in used_categories:
cmd = self.get_cmd_by_key(cat)
legend.append(f'<span style="background-color: {cmd.color}; padding: 3px 5px; border-radius: 3px; margin-right: 5px; font-size:0.9em; display: inline-block; vertical-align: middle; color: black; font-family: sans-serif;">{cmd.name}</span>') # Improved legend item styling
legend.append('</div>')
result.extend(legend)
return "".join(result)
def get_annotated_text(self, annotator_id=None, discharge_summary_id=None) -> dict:
"""Generate a dictionary containing annotation data."""
unique_id = str(uuid.uuid4())[:8]
annotations = []
if self.annotations:
sorted_annotations = sorted(self.annotations, key=lambda x: (x[0], -x[1]))
for idx, (start, end, entity_type) in enumerate(sorted_annotations):
cmd = self.get_cmd_by_key(entity_type)
annotations.append({
"decision": self.raw_text[start:end],
"category": f'Category {categories.index(cmd.name) + 1}: {cmd.name}',
"start_offset": start,
"end_offset": end,
"annotation_id": f'{unique_id}_{idx}'
})
return {
"annotator_id": annotator_id if annotator_id else None,
"discharge_summary_id": discharge_summary_id if discharge_summary_id else None,
"annotations": annotations
}
def init_text(text):
if text:
state.set_text(text)
return state.get_display_text()
return "<div id='annotated-text'>Enter text to begin...</div>"
def add_entity(cmd_key, start: int, end: int):
"""Handle adding new entity annotations"""
if start == end:
return state.get_display_text(), "No text selected"
cmd = state.get_cmd_by_key(cmd_key)
if not cmd:
return state.get_display_text(), "Invalid command"
new_text = state.add_annotation(start, end, cmd.key)
return new_text, f"Added {cmd.name} entity"
def remove_entity(start: int, end: int):
"""Handle removal of annotations"""
if start == end:
return state.get_display_text(), "No text selected"
return state.remove_annotation(start, end), "Removed annotation"
def undo():
"""Handle undoing the last action"""
return state.undo(), "Undid last action"
def download_annotations(annotator_id, discharge_summary_id):
"""Generates and provides annotation data for download."""
annotation_data = state.get_annotated_text(annotator_id, discharge_summary_id)
with open(OUTPUT_PATH, 'w') as f:
json.dump(annotation_data, f, indent=4)
return OUTPUT_PATH
def refresh_annotations(annotator_id, discharge_summary_id):
"""Refreshes the displayed annotation JSON."""
return state.get_annotated_text(annotator_id, discharge_summary_id)
def clear_annotations():
state.set_text(state.raw_text) # Clears annotations by setting empty text
return gr.update(interactive=True, elem_classes=[]), state.get_display_text() # added value
def model_predict(text):
"""Placeholder for model prediction logic"""
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
spans = [(s, e, keys[c]) for c, s, e in spans]
return spans
def apply_predictions(text):
predictions = model_predict(text)
state.set_text(text)
for start, end, entity_type in predictions:
state.add_annotation(start, end, entity_type)
return state.get_display_text()
state = AnnotationState()
all_keys = [f'"{cmd.key}"' for cmd in state.press_commands]
key_list_str = f'[{", ".join(all_keys)}]'
shortcut_js = shortcut_js_template%key_list_str
def postprocess_labels(text, logits, t2c):
tags = [None for _ in text]
labels = logits.argmax(-1)
for i,cat in enumerate(labels):
if cat != OTHERS_ID:
char_ids = t2c(i)
if char_ids is None:
continue
for idx in range(char_ids.start, char_ids.end):
if tags[idx] is None and idx < len(text):
tags[idx] = categories[cat // 2]
for i in range(len(text)-1):
if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
tags[i] = tags[i-1]
return tags
def indicators_to_spans(labels, t2c = None):
def add_span(c, start, end):
if t2c(start) is None or t2c(end) is None:
start, end = -1, -1
else:
start = t2c(start).start
end = t2c(end).end
span = (c, start, end)
spans.add(span)
spans = set()
num_tokens = len(labels)
num_classes = OTHERS_ID // 2
start = None
cls = None
for t in range(num_tokens):
if start and labels[t] == cls + 1:
continue
elif start:
add_span(cls // 2, start, t - 1)
start = None
# if not start and labels[t] in [2*x for x in range(num_classes)]:
if not start and labels[t] != OTHERS_ID:
start = t
cls = int(labels[t]) // 2 * 2
return spans
def extract_date(text):
pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
match = re.search(pattern, text).group(1)
start, end = None, None
for i, c in enumerate(match):
if start is None and c.isnumeric():
start = i
elif c.isnumeric():
end = i + 1
match = match[start:end]
return match
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)
def predict(text):
encoding = tokenizer.encode_plus(text)
x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
mask = torch.ones_like(x)
output = model.generate(x, mask)[0]
return output, encoding.token_to_chars
def process(text):
if text is not None:
output, t2c = predict(text)
tags = postprocess_labels(text, output, t2c)
with open('log.csv', 'a') as f:
f.write(f'{datetime.now()},{text}\n')
return list(zip(text, tags))
else:
return text
def process_sum(*inputs):
global sum_c
dates = {}
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
present_decs = set(cat for cat, _, _ in spans)
decs = {k: [] for k in sorted(present_decs)}
for c, s, e in spans:
decs[c].append(text[s:e])
dates[date] = decs
out = ""
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
out += f'## **[{date}]**\n\n'
decs = dates[date]
for c in decs:
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
for dec in decs[c]:
out += f'{dec}\n\n'
return out
def get_structured_data(*inputs):
global sum_c
data = []
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
for c, s, e in spans:
data.append({
'date': date,
'timestamp': parser.parse(date),
'decision_cat': c,
'decision_type': categories[c], 'details': text[s:e]})
return data
def update_inputs(inputs):
outputs = []
if inputs is None:
c = 0
else:
inputs = [open(f.name).read() for f in inputs]
for i, text in enumerate(inputs):
outputs.append(gr.update(value=text, visible=True))
c = len(inputs)
n = SUM_INPUTS
for i in range(n - c):
outputs.append(gr.update(value='', visible=False))
global sum_c; sum_c = c
global structured_data
structured_data = get_structured_data(*inputs) if inputs is not None else []
return outputs
def add_ex(*inputs):
global sum_c
new_idx = sum_c
if new_idx < SUM_INPUTS:
out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
sum_c += 1
else:
out = inputs
return out
def sub_ex(*inputs):
global sum_c
new_idx = sum_c - 1
if new_idx > 0:
out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
sum_c -= 1
else:
out = inputs
return out
def create_timeline_plot(data: List[Dict[str, Any]]):
df = pd.DataFrame(data)
# df['int_cat'] = pd.factorize(df['decision_type'])[0]
# df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
# fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
# title='Patient Timeline')
# fig.update_layout(
# yaxis=dict(
# tickmode='array',
# tickvals=df['int_cat'].unique(),
# ticktext=df['decision_type'].unique()),
# xaxis_title='Date',
# yaxis_title='Category')
fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
stripmode = "overlay",
title='Patient Timeline')
fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
fig.update_layout(height=600)
return fig
def filter_timeline(decision_types: str, start_date: str, end_date: str) -> px.scatter:
global structured_data
filtered_data = structured_data
if 'All' not in decision_types:
filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
start = parser.parse(start_date)
end = parser.parse(end_date)
filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
return create_timeline_plot(filtered_data)
def generate_summary(*inputs) -> str:
global structured_data
structured_data = get_structured_data(*inputs)
dates = defaultdict(lambda: defaultdict(list))
for event in structured_data:
dates[event['date']][event['decision_cat']].append(event['details'])
out = ""
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
out += f'## **[{date}]**\n\n'
decs = dates[date]
for c in decs:
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
for dec in decs[c]:
out += f'{dec}\n\n'
return out, create_timeline_plot(structured_data)
global sum_c
sum_c = 1
structured_data = []
device = model.backbone.device
with gr.Blocks(head=shortcut_js,
title='MedDecXtract', css=css) as demo:
gr.Image('assets/logo.png', height=100, container=False, show_download_button=False)
gr.Markdown(title)
with gr.Tab("Decision Extraction & Classification"):
gr.Markdown(label_desc)
with gr.Row():
with gr.Column():
gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
text_input = gr.Textbox(
# value=examples[0],
label="",
placeholder="Enter text here...")
text_btn = gr.Button('Run')
with gr.Column():
gr.Markdown("## Labeled Summary or Note"),
text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
gr.Examples(text_examples, inputs=text_input)
with gr.Tab("Patient Visualization"):
gr.Markdown(vis_desc)
with gr.Column():
sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
for i in range(2, SUM_INPUTS + 1)])
with gr.Row():
ex_add = gr.Button("+")
ex_sub = gr.Button("-")
upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
gr.Examples(sum_examples, inputs=upload,
fn = update_inputs, outputs=sum_inputs, run_on_click=True)
with gr.Column():
with gr.Row():
decision_type = gr.Dropdown(["All"] + categories,
multiselect=True,
label="Decision Type", value="All")
start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
filter_button = gr.Button("Filter Timeline")
timeline_plot = gr.Plot()
summary_button = gr.Button("Generate Summary")
with gr.Accordion('Summary'):
summary_output = gr.Markdown(elem_id='sum-out') #gr.Textbox(label="Summary")
with gr.Tab("Interactive Narrative Annotator"):
gr.Markdown(annotator_desc)
with gr.Row():
with gr.Column():
annot_text_input = gr.Textbox(
label="Enter Text to Annotate",
placeholder="Enter or paste text here...",
lines=5,
elem_id='annot_text_input'
)
gr.Examples(text_examples, inputs=annot_text_input)
msg_output = gr.Textbox(label="Status Messages", interactive=False)
display_area = gr.HTML(
label="Annotated Text",
value="<div id='annotated-text'><i>Output box</i></div>"
)
k = 3 # Set the maximum number of buttons per row
num_buttons = len(state.press_commands)
rows = (num_buttons + k - 1) // k
entity_buttons = []
with gr.Group():
predict_btn = gr.Button("Generate Predictions", size='lg', variant='primary')
for i in range(rows):
with gr.Row():
for j in range(min(k, num_buttons - i * k)):
real_idx = i * k + j
cmd = state.press_commands[real_idx]
entity_buttons.append(
gr.Button(f"{cmd.symbol} {cmd.name} ({cmd.key})",
elem_id=f'btn_{cmd.key}',
size='sm'))
if i == (rows - 1):
remove_btn = gr.Button("Remove (q)", size='sm', variant='secondary', elem_id='btn_q')
undo_btn = gr.Button("Undo (z)", size='sm', elem_id='btn_z')
clear_btn = gr.Button("Clear Annotations", size='lg', variant='stop')
with gr.Accordion("Download/View Annotations \U0001F4BE", open=False): # Combined Accordion
with gr.Row():
annotator_id = gr.Textbox(label="Annotator ID", placeholder="Enter your annotator ID")
discharge_summary_id = gr.Textbox(label="Discharge Summary ID", placeholder="Enter the discharge summary ID")
with gr.Row():
download_file = gr.File(interactive=False, visible=True, label="Download") # download_btn renamed and made into gr.File
annotations_json = gr.JSON(label="Annotations JSON")
refresh_btn = gr.Button("🔄 Refresh Annotations", elem_id="refresh_btn") # Renamed for clarity
download_btn = gr.Button("Download Annotated Text", elem_id="download_btn") # Added a button to trigger download
# Hidden state components for selection
selection_start = gr.Number(value=0, visible=False)
selection_end = gr.Number(value=0, visible=False)
gr.Markdown(desc)
# Functions
# Wire up event handlers
annot_text_input.change(init_text, annot_text_input, display_area)
# Wire up the buttons with the selection JavaScript
for btn, cmd in zip(entity_buttons, state.press_commands):
btn.click(lambda s=None, e=None, c=cmd.key: add_entity(c, s, e),[selection_start, selection_end], [display_area, msg_output], js=select_js).then(
lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']), # Disable input if annotations exist
outputs=annot_text_input
)
remove_btn.click( remove_entity, [selection_start, selection_end], [display_area, msg_output], js=select_js).then(
lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
outputs=annot_text_input
)
undo_btn.click(undo, None, [display_area, msg_output]).then(
lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
outputs=annot_text_input
)
download_btn.click(download_annotations, [annotator_id, discharge_summary_id], download_file) # Output to download_file
refresh_btn.click(refresh_annotations, [annotator_id, discharge_summary_id], annotations_json) # No change in functionality
clear_btn.click(clear_annotations, outputs=[annot_text_input, display_area])
predict_btn.click(apply_predictions, annot_text_input, display_area).then(
lambda: gr.update(interactive=state.annotations == [], elem_classes=[] if state.annotations == [] else ['locked-input']),
outputs=text_input
)
text_input.submit(process, inputs=text_input, outputs=text_out)
text_btn.click(process, inputs=text_input, outputs=text_out)
upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
summary_button.click(generate_summary, inputs=sum_inputs, outputs=[summary_output, timeline_plot])
demo.launch(share=True)
|