mojtaba-nafez's picture
fix app.py to read from saved poem_embeddings.json
fd6aade
from models import PoemTextModel
from inference import predict_poems_from_text
from utils import get_poem_embeddings
import config as CFG
import json
import torch
import gradio as gr
def greet_user(name):
return "Hello " + name + " Welcome to Gradio!😎"
if __name__ == "__main__":
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
model.eval()
# Inference: Output some example predictions and write them in a file
with open('poem_embeddings.json', encoding="utf-8") as f:
pe = json.load(f)
poem_embeddings = torch.Tensor([p['embeddings'] for p in pe]).to(CFG.device)
print(poem_embeddings.shape)
poems = [p['beyt'] for p in pe]
def gradio_make_predictions(text):
beyts = predict_poems_from_text(model, poem_embeddings, text, poems, n=10)
return "\n".join(beyts)
CFG.batch_size = 512
# print(poem_embeddings[0])
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
# f.write(json.dumps(poem_embeddings, indent= 4))
text_input = gr.Textbox(label = "Enter the text to find poem beyts for")
output = gr.Textbox()
app = gr.Interface(fn = gradio_make_predictions, inputs=text_input, outputs=output)
app.launch()